首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4420篇
  免费   239篇
  国内免费   22篇
电工技术   118篇
综合类   10篇
化学工业   1108篇
金属工艺   118篇
机械仪表   143篇
建筑科学   144篇
矿业工程   6篇
能源动力   355篇
轻工业   490篇
水利工程   63篇
石油天然气   39篇
无线电   517篇
一般工业技术   808篇
冶金工业   253篇
原子能技术   23篇
自动化技术   486篇
  2024年   9篇
  2023年   94篇
  2022年   156篇
  2021年   295篇
  2020年   187篇
  2019年   168篇
  2018年   248篇
  2017年   214篇
  2016年   221篇
  2015年   159篇
  2014年   210篇
  2013年   394篇
  2012年   305篇
  2011年   330篇
  2010年   206篇
  2009年   197篇
  2008年   136篇
  2007年   122篇
  2006年   115篇
  2005年   81篇
  2004年   69篇
  2003年   81篇
  2002年   58篇
  2001年   51篇
  2000年   54篇
  1999年   34篇
  1998年   73篇
  1997年   46篇
  1996年   41篇
  1995年   45篇
  1994年   23篇
  1993年   34篇
  1992年   11篇
  1991年   19篇
  1990年   15篇
  1989年   15篇
  1988年   23篇
  1987年   23篇
  1986年   18篇
  1985年   12篇
  1984年   18篇
  1983年   8篇
  1982年   10篇
  1981年   8篇
  1980年   5篇
  1979年   8篇
  1978年   4篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
排序方式: 共有4681条查询结果,搜索用时 15 毫秒
21.

The latest developments in mobile computing technology have increased the computing capabilities of smart mobile devices (SMDs). However, SMDs are still constrained by low bandwidth, processing potential, storage capacity, and battery lifetime. To overcome these problems, the rich resources and powerful computational cloud is tapped for enabling intensive applications on SMDs. In Mobile Cloud Computing (MCC), application processing services of computational clouds are leveraged for alleviating resource limitations in SMDs. The particular deficiency of distributed architecture and runtime partitioning of the elastic mobile application are the challenging aspects of current offloading models. To address these issues of traditional models for computational offloading in MCC, this paper proposes a novel distributed and elastic applications processing (DEAP) model for intensive applications in MCC. We present an analytical model to evaluate the proposed DEAP model, and test a prototype application in the real MCC environment to demonstrate the usefulness of DEAP model. Computational offloading using the DEAP model minimizes resources utilization on SMD in the distributed processing of intensive mobile applications. Evaluation indicates a reduction of 74.6% in the overhead of runtime application partitioning and a 66.6% reduction in the CPU utilization for the execution of the application on SMD.

  相似文献   
22.

Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.

  相似文献   
23.
Rhenium disulfide (ReS2) is a two‐dimensional (2D) group VII transition metal dichalcogenide (TMD). It is attributed with structural and vibrational anisotropy, layer‐independent electrical and optical properties, and metal‐free magnetism properties. These properties are unusual compared with more widely used group VI‐TMDs, e.g., MoS2, MoSe2, WS2 and WSe2. Consequently, it has attracted significant interest in recent years and is now being used for a variety of applications including solid state electronics, catalysis, and, energy harvesting and energy storage. It is anticipated that ReS2 has the potential to be equally used in parallel with isotropic TMDs from group VI for all known applications and beyond. Therefore, a review on ReS2 is very timely. In this first review on ReS2, we critically analyze the available synthesis procedures and their pros/cons, atomic structure and lattice symmetry, crystal structure, and growth mechanisms with an insight into the orientation and architecture of domain and grain boundaries, decoupling of structural and vibrational properties, anisotropic electrical, optical, and magnetic properties impacted by crystal imperfections, doping and adatoms adsorptions, and contemporary applications in different areas.  相似文献   
24.
In orthogonal frequency division multiplexing (OFDM) system, high value of peak-to-average power ratio (PAPR) is an operational problem that may cause non-linear distortion resulting in high bit error rate. Selected mapping (SLM) is a well known technique that shows good PAPR reduction capability but inflicts added computational overhead. In this paper, using Riemann sequence based SLM method, we applied reverse searching technique to find out low PAPR yielding phase sequences with significant reduction in computational complexity. Additionally, we explored side-information free transmission that achieves higher throughput but sacrifices PAPR reduction. Finally, to overcome this loss in PAPR reduction, we proposed application of Square-rooting companding technique over the output OFDM transmitted signal. Simulation results show that the proposed method is able to compensate the sacrifice in PAPR and achieved PAPR reduction of 8.9 dB with very low computational overhead.  相似文献   
25.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
26.
Coexistence analysis is extremely important in examining the possibility for spectrum sharing between orthogonal frequency‐division multiplexing (OFDM)‐based international mobile telecommunications (IMT)‐Advanced and other wireless services. In this letter, a new closed form method is derived based on power spectral density analysis in order to analyze the coexistence of OFDM‐based IMT‐Advanced systems and broadcasting frequency modulation (FM) systems. The proposed method evaluates more exact interference power of IMT‐Advanced systems in FM broadcasting systems than the advanced minimum coupling loss (A‐MCL) method. Numerical results show that the interference power is 1.3 dB and 3 dB less than that obtained using the A‐MCL method at cochannel and adjacent channel, respectively. This reduces the minimum separation distance between the two systems, which eventually saves spectrum resources.  相似文献   
27.
An indoor personal rowing machine (Concept 2 Inc., Morrisville, VT) has been modified for functional electrical stimulation assisted rowing exercise in paraplegia. To successfully perform the rowing maneuver, the voluntarily controlled upper body movements must be coordinated with the movements of the electrically stimulated paralyzed legs. To achieve such coordination, an automatic controller was developed that employs two levels of hierarchy. A high level finite state controller identifies the state or phase of the rowing motion and activates a low-level state-dedicated fuzzy logic controller (FLC) to deliver the electrical stimulation to the paralyzed leg muscles. A pilot study with participation of two paraplegic volunteers showed that FLC spent less muscle energy, and produced smoother rowing maneuvers than the existing On-Off constant-level stimulation controller.  相似文献   
28.
A routing protocol chooses one of the several paths (routes) from a source node to a destination node in the computer network, to send a packet of information. In this paper, we propose a new routing protocol, which we call st-routing protocol, based on st-numbering of a graph. The protocol fits well in noisy environments where robustness of routing using alternative paths is a major issue. The proposed routing protocol provides a systematic way to retry alternative paths without generating any duplicate packets. The protocol works for only those networks that can be represented by biconnected graphs.  相似文献   
29.
The authors present an analysis for evaluating the performance characteristics of reluctance-augmented shaded pole motors. The proposed model is based on the d-q axis technique and is valid for steady-state and dynamic conditions. An efficient method of predicting the steady-state operating characteristics of the triac-controlled shaded pole motor is presented. This method calculates the currents and average torque as a function of conduction and control angles of the triac. The effect of critical parameters on the motor performance is investigated. Simulated results are compared with experimental values of a two-pole single phase test induction motor  相似文献   
30.
High peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems seriously impacts power efficiency in radio frequency section due to the nonlinearity of high-power amplifiers. In this article, an improved gamma correction companding (IGCC) is proposed for PAPR reduction and investigated under multipath fading channels. It is shown that the proposed IGCC provides a significant PAPR reduction while improving power spectral levels and error performances when compared with the previous gamma correction companding. IGCC outperforms existing companding methods when a nonlinear solid-state power amplifier (SSPA) is considered. Additionally, with the introduction of \(\alpha , \beta , \gamma \), and \(\varDelta \) parameters, the improved companding can offer more flexibility in the PAPR reduction and therefore achieves a better trade-off among the PAPR gain, bit error rate (BER), and power spectral density (PSD) performance. Moreover, IGCC improves the BER and PSD performances by minimizing the nonlinear companding distortion. Further, IGCC improves signal-to-noise ratio (SNR) degradation (\(\varDelta _{\mathrm{SNR}}\)) and total degradation performances by 12.2 and 12.8 dB, respectively, considering an SSPA with input power back-off of 3.0 dB. Computer simulation reveals that the performances of IGCC are independent of the modulation schemes and works with arbitrary number of subcarriers (N), while it does not increase computational complexity when compared with the existing companding schemes used for PAPR reduction in OFDM systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号