Sulfur‐doped graphene (SG) is prepared by a thermal shock/quench anneal process and investigated as a unique Pt nanoparticle support (Pt/SG) for the oxygen reduction reaction (ORR). Particularly, SG is found to induce highly favorable catalyst‐support interactions, resulting in excellent half‐cell based ORR activity of 139 mA mgPt?1 at 0.9 V vs RHE, significant improvements over commercial Pt/C (121 mA mgPt?1) and Pt‐graphene (Pt/G, 101 mA mgPt?1). Pt/SG also demonstrates unprecedented stability, maintaining 87% of its electrochemically active surface area following accelerated degradation testing. Furthermore, a majority of ORR activity is maintained, providing 108 mA mgPt?1, a remarkable 171% improvement over Pt/C (39.8 mA mgPt?1) and an 89% improvement over Pt/G (57.0 mA mgPt?1). Computational simulations highlight that the interactions between Pt and graphene are enhanced significantly by sulfur doping, leading to a tethering effect that can explain the outstanding electrochemical stability. Furthermore, sulfur dopants result in a downshift of the platinum d‐band center, explaining the excellent ORR activity and rendering SG as a new and highly promising class of catalyst supports for electrochemical energy technologies such as fuel cells. 相似文献
Glass with compositions xK2O-(30 ? x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300–800 nm. From the absorption edge studies, the values of the optical band gap (Eopt) and Urbach energy (ΔE) have been evaluated. The values of Eopt and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model. 相似文献
The advent of interactive digital platforms has led people to progressively interact on such platforms, urging organizations to create online communities to engage customers with them and with each other to enhance brand loyalty. This study attempts to investigate what motivates customers to engage in these brand communities. Through a questionnaire survey of 430 Facebook users, this study investigates whether and how the unique characteristics (information quality, system quality, virtual interactivity, and rewards) of online brand communities affect customer engagement. The consequent effect of customer engagement on brand loyalty is also examined. This study frames and empirically validates a model for engaging customers with online brand communities on Facebook, considering the moderating role of gender. The Stimulus-Organism-Response paradigm is solicited to justify the theoretical background of this study. The data were analyzed using structure equation modelling. Results reveal that each of the characteristics positively influences customer engagement, with information quality and virtual interactivity bearing the strongest influence. Customer engagement also exhibits a strong positive impact on brand loyalty. This results further reveal that gender gap in the online environment is declining as the impact of all the four characteristics of online brand communities on customer engagement was invariable across male and female members. 相似文献
An integrated digital controller for dc-dc switch-mode power supplies (SMPS) used in portable applications is introduced. The controller has very low power consumption, fast dynamic response, and can operate at programmable constant switching frequencies exceeding 10 MHz. To achieve these characteristics, three novel functional blocks, a digital pulse-width modulator based on second-order sigma-delta concept (Sigma-Delta DPWM), dual-clocking mode compensator, and nonlinear analog-to-digital converter are combined. In steady state, to minimize power consumption, the controller is clocked at a frequency lower than SMPS switching frequency. During transients the clock rate is increased to the switching frequency improving transient response. The controller integrated circuit (IC) is fabricated in a standard 0.18-mum process and tested with a 750-mW buck converter prototype. Experimental results show the controller current consumption of 55 muA/MHz and verify closed-loop operation at programmable switching frequencies up to 12.3 MHz. Simulation results indicating that this architecture can potentially support operation at switching frequencies beyond 100 MHz are also presented. 相似文献
International Journal of Wireless Information Networks - This paper exhibits the confidentiality performance study of a cooperative multicast network consisting of $${\mathcal {K}}$$ asymmetric... 相似文献
Lead sulfide (PbS) and cadmium sulfide (CdS) quantum dots (QDs) are prepared over mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) process. These QDs are exploited as a sensitizer in solid‐state solar cells with 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as a hole conductor. High‐resolution transmission electron microscopy (TEM) images reveal that PbS QDs of around 3 nm in size are distributed homogeneously over the TiO2 surface and are well separated from each other if prepared under common SILAR deposition conditions. The pore size of the TiO2 films and the deposition medium are found to be very critical in determining the overall performance of the solid‐state QD cells. By incorporating promising inorganic QDs (PbS) and an organic hole conductor spiro‐OMeTAD into the solid‐state cells, it is possible to attain an efficiency of over 1% for PbS‐sensitized solid‐state cells after some optimizations. The optimized deposition cycle of the SILAR process for PbS QDs has also been confirmed by transient spectroscopic studies on the hole generation of spiro‐OMeTAD. In addition, it is established that the PbS QD layer plays a role in mediating the interfacial recombination between the spiro‐OMeTAD+ cation and the TiO2 conduction band electron, and that the lifetime of these species can change by around 2 orders of magnitude by varying the number of SILAR cycles used. When a near infrared (NIR)‐absorbing zinc carboxyphthalocyanine dye (TT1) is added on top of the PbS‐sensitized electrode to obtain a panchromatic response, two signals from each component are observed, which results in an improved efficiency. In particular, when a CdS‐sensitized electrode is first prepared, and then co‐sensitized with a squarine dye (SQ1), the resulting color change is clearly an addition of each component and the overall efficiencies are also added in a more synergistic way than those in PbS/TT1‐modified cells because of favorable charge‐transfer energetics. 相似文献
The implementation of machine-to-machine (M2M) communications in fifth-generation (5G) cellular networks can facilitate with several benefits like enhancement of bandwidth utilization, accommodating large number of users and decreasing traffic load on evolved node B (eNB). Integration of location information of unknown machine in communication mode selection mechanism is the key feature of this research. In this paper, a distance based communication mode selection mechanism using non-orthogonal resource sharing scheme is adopted in the proposed system model. Under the proposed mechanism, the expressions of throughput and RBs utilization policy are derived, which are the key parameters to evaluate the performance in the proposed network. Depending on the mode selection condition, such as threshold distance and threshold SINR between M2M users and regular cellular users, a UE can automatically choose its communication mode in the network. It is supposed that selection of mode before data transfer can improve the system performance. On the other hand, designing of efficient distance assisted proposed resource blocks (RBs) utilization policy reduces the traffic load on the eNB. Extensive simulations are carried out for evaluating the performance of the proposed mechanisms. The system performance is compared with various changeable parameters, such as throughput, mode selection threshold SINR, threshold distance and RBs. Besides, the proposed mechanism provides better network performance as well as reduces the traffic load in the proposed network.
In this paper a novel jamming technique is presented. The idea of the proposed jamming technique is based on adding inphase and quadrature impairments to the jamming signal. The jammer is simply a quadrature phase shift keying signal. The bit error rate probability (BER) of the proposed jamming signal is derived analytically and validated with the aid of the software defined radio SystemVue design software. The standard multi input multi output (MIMO) wireless local area network (WLAN) IEEE802.11n communication system is chosen as the victim system. Its BER performance is simulated in the presence of the proposed jamming signal in multipath fading channel. Finally, the efficiency of the proposed jamming signal on the MIMO WLAN IEEE802.11n communication system is practically measured in the laboratory where a practical experiment is held and the efficiency of the proposed jamming signal is compared with the traditional single tone jamming signal. It will be shown practically that the proposed jamming technique outperforms the traditional single tone jamming signal by nearly 15 dBm on the impact of efficiently jam the MIMO WLAN IEEE802.11n communication system.