The industrial demand for automated machining systems to enhance process productivity and quality in machining aerospace components requires investigation of tool condition monitoring. The formation of chip and its removal have a remarkable effect on the state of the cutting tool during turning. This work presents a new technique using acoustic emission (AE) to monitor the tool condition by separating the chip formation frequencies from the rest of the signal which comes mostly from tool wear and plastic deformation of the work material. A dummy tool holder and sensor setup have been designed and integrated with the conventional tool holder system to capture the time-domain chip formation signals independently during turning. Several dry turning tests have been conducted at the speed ranging from 120 to 180?m/min, feed rate from 0.20 to 0.50?mm/rev, and depth of cut from 1 to 1.5?mm. The tool insert used was TiN-coated carbide while the work material was high-carbon steel. The signals from the dummy setup clearly differ from the AE signals of the conventional setup. It has been observed that time-domain signal and corresponding frequency response can predict the tool conditions. The rate of tool wear was found to decrease with chip breakage even at higher feed rate. The tool wear and plastic deformation were viewed to decrease with the increased radius of chip curvature and thinner chip thickness even at the highest cutting speed, and these have been verified by measuring tool wear. The chip formation frequency has been found to be within 97.7 to 640?kHz. 相似文献
Two ternary systems of confectionery fats were studied. In the first system, lauric cocoa butter substitutes (CBS), anhydrous milk fat (AMF), and Malaysian cocoa butter (MCB) were blended. In the second system, high-melting fraction of milk fat (HMF42) was used to replace AMF and also was blended with CBS and MCB. CBS contained high concentrations of lauric (C12:0) and myristic (C14:0) acids, whereas palmitic (C16:0), stearic (C18:0), and oleic (C18:1) acid concentrations were higher in MCB. In addition, AMF and HMF42 contained appreciable amounts of short-chain fatty acids. CBS showed the highest melting enthalpy (143.1 J/g), followed by MCB (138.8 J/g), HMF42 (97.1 J/g), and AMF (72.9 J/g). The partial melting enthalpies at 20 and 30°C demonstrated formation of a eutectic along the binary blends of CBS/MCB, AMF/MCB, and HMF42/MCB. However, no eutectic effect was observed along the binary lines of AMF/CBS and HMF42/CBS. Characteristics of CBS included two strong spacings at 4.20 and 3.8 Å. MCB showed a strong spacing at 4.60 Å and a weak short-spacing at 4.20 Å. On the other hand, AMF exhibited a very weak short-spacing at 4.60 Å and two strong spacings at 4.20 and 3.8 Å, while HMF42 showed an intermediate short-spacing at 4.60 Å and also two strong short-spacings at 4.20 and 3.8 Å. Solid fat content (SFC) analyses at 20°C showed that CBS possessed the highest solid fat (91%), followed by MCB (82.4%), HMF42 (41.4%), and AMF (15.6%). However, at 30°C, MCB showed the highest SFC compared to the other fats. Results showed that a higher SFC in blends that contain HMF does not necessarily correlate with a stronger tendency to form the β polymorph. 相似文献
Propane (R290), a hydrocarbon refrigerant, is an excellent choice of cooling fluids for use in refrigeration and air conditioning systems considering the environmental point of view and system performance. The phase transition phenomenon and structural and dynamic properties of R290 were analyzed through a molecular dynamics (MD) simulation. The densities, isobaric heat capacities and viscosities were computed and the variations of density, volume, potential energy and the nucleation process were examined to investigate the effects of condensation temperature on the phase transition rate. The mean square displacement and velocity autocorrelation function for different temperatures were simulated for dynamical analysis. Radial distribution functions were investigated to get insight into the structural analysis at the atomic level. Shear viscosity and isobaric heat capacity obtained by the present simulation showed a good agreement with the REFPROP data. The structural analysis revealed that the phase transition of R290 did not affect its intramolecular structure.
Journal of Materials Science: Materials in Electronics - Achieving controllable film-forming process is always a difficult issue for practical application, especially for bi-/multiple component... 相似文献
Synthesis of nitrogen-doped graphene (NDG) via chemical vapor deposition (CVD) using phthalocyanine, a solid precursor containing carbon and nitrogen, is reported. The effect of the growth parameters (temperature, time, and carrier gas) on the surface morphology, dopant configuration, and conductivity of the films was studied. The NDG films were synthesized at different substrate temperatures of 1050 °C, 950 °C, and 850 °C for different growth times of 5–15 min in the presence of an Ar?+?H2 gas mixture. Significantly, pyrrolic-N type defects are observed predominantly after 5 min of growth time. At 1050 °C, pyrrolic N content is around 45.4% after 5 min of growth which decreased to 24.1% after 15 min of growth, while the graphitic-N content increased from 41.2 to 76% at the same time. It is demonstrated that the conversion of pyrrolic type of nitrogen to graphitic nitrogen defects can be arrested by changing the carrier gas from Ar?+?H2 to Ar. The pyrrolic-N content increased to 64% by changing the gas from Ar?+?H2 to Ar at 15 min. The electrolyte gated field-effect transistors were fabricated using the obtained films, and dopant-dependent mobility was observed. The mobility for pyrrolic-N-dominated film is 13.6 cm2 V?1 s?1 increasing to 62.8 cm2 V?1 s?1 for graphitic-N-dominated film.
In this work, we aimed to develop stable usnic acid (UA)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) as a potential drug carrier for in vitro analysis of MCF-7 (breast cancer cell line), HeLa (cervix cancer cell line), L929 (mouse fibroblast cell line), U87 (glioblastoma cell line, brain cancer), and A549 (human lung cancer cell line) cell lines. SPIONs were synthesized via the polyol method and functionalized with APTES using the Stöber method. Carboxylated polyethylene glycol (PEG-COOH), folic acid (FA), and carboxylated luteolin (CL) were conjugated on the surface via a carboxylic/amine group using the nanoprecipitation method, respectively. X-ray powder diffraction analysis confirmed the purity of the product with crystallite size of around 11 nm. Fourier-transformed infrared spectrophotometer (FT-IR) analyses explained the conjugation of all functional groups to the surface of SPIONs. The percentages of inorganic and organic content in the products were investigated via thermal gravimetric analyzer (TGA). For morphological analysis, a transmission electron microscope (TEM) was used. The superparamagnetic property of the product was also confirmed by vibrating sample magnetometer (VSM). 相似文献
ABSTRACTA thermo-visco-plasticity model, recently developed based on a microinertia driven dynamic flow rule, is exploited to account for damage due to fracture. This is accomplished by adjoining the equations for thermo-visco-plasticity, herein discretized through the smooth particle hydrodynamics (SPH), with a “pseudospring” based discrete damage model. In treating ductile fractures, this coupled material model accounts for the inertia associated with moving microstructural defects and time lags for the dissipative fluxes to attain the steady state. In this approach, while the microinertia-driven flow rule provides a vehicle to evolve plastic strain, pseudosprings are exploited to treat material damage and the resulting reduced force transfer. The current scheme does not necessitate the introduction of a yield or damage surface in evolving the plastic-strain/damage parameters, and thus the numerical implementation avoids a computationally intensive return mapping. We demonstrate the performance of the proposed model through SPH-based numerical simulations and also undertake a validation exercise against experimental observations from gas-gun penetration tests on an 8-mm thick Weldox 460 E steel plate. 相似文献
Journal of Failure Analysis and Prevention - A dragline is the largest mobile equipment on earth, and it is called the “kingpin” of any mine site. In this present investigation, a case... 相似文献
Lead free (Na0.5K0.5) NbO3 (NKN) being hygroscopic in nature is very difficult to be fabricated with enhanced properties in thin films. To maintain stoichiometry 0, 5 and 10% mole excess of Na on A-site were added on NKN bulk targets. The perovskite ABO3 crystal structure incorporating 0, 5 and 10% excess alkali ions were grown on Pt/Ti/SiO2/Si substrate by pulsed laser deposition, using stoichiometric high density ceramic targets. X-ray diffraction peaks and Raman scattering spectra suggest the formation of single phase of the film in monoclinic phase. The dielectric properties and leakage current is improved with increasing amount of Na concentration. The reduction in leakage current with addition of excess Na concentration may be due to increase in grain size decrease in the connection of grain boundaries with grains. The impedance spectra of the film shows single dielectric relaxation which is non-debye type and the relaxation frequency is shifted to higher side at higher frequency. 相似文献
System-level packaging is one of the critical issues that need to be addressed for free space optical interconnections (FSOI) to become useful in desktop systems. The performance of FSOI, e.g., in terms of system bit-error rate, is greatly affected by misalignments in the optical system. Therefore tolerancing, i.e., the ability to analyze and predict the effects of misalignments in the system, is of prime importance to system designers. We introduce an approach in which we study the effects of optical misalignments and other tolerance factors using statistical methods. We use Monte Carlo simulations, design of the experiments, and regression techniques to fit a polynomial equation that expresses the relationship between the system performance and the tolerance factors. This prediction model can be used for design, cost optimization, and quality control purposes. In addition, we perform a sensitivity analysis to determine those tolerance variables that have the greatest effect on system performance. 相似文献