Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation. 相似文献
Internet of Things (IoT) refers to uniquely identifiable entities. Its vision is the world of connected objects. Due to its connected nature the data produced by IoT is being used for different purposes. Since IoT generates huge amount of data, we need some scalable storage to store and compute the data sensed from the sensors. To overcome this issue, we need the integration of cloud and IoT, so that the data might be stored and computed in a scalable environment. Harmonization of IoT in Cloud might be a novel solution in this regard. IoT devices will interact with each other using Constrained Application Protocol (CoAP). In this paper, we have implemented harmonizing IoT in Cloud. We have used CoAP to get things connected to each other through the Internet. For the implementation we have used two sensors, fire detector and the sensor attached with the door which is responsible for opening it. Thus our implementation will be storing and retrieving the sensed data from the cloud. We have also compared our implementation with different parameters. The comparison shows that our implementation significantly improves the performance compared to the existing system.
Off-state degradation in drain-extended NMOS transistors is studied. Carefully designed experiments and well-calibrated simulations show that hot carriers, which are generated by impact ionization of surface band-to-band tunneling current, are responsible for interface damage during off-state stress. Classical on-state hot carrier degradation has historically been associated with broken equivSi-H bonds at the interface. In contrast, the off-state degradation in drain-extended devices is shown to be due to broken equivSi-O- bonds. The resultant degradation is universal, which enables a long-term extrapolation of device degradation at operating bias conditions based on short-term stress data. Time evolution of degradation due to broken equivSi-O- bonds and the resultant universal behavior is explained by a bond-dispersion model. Finally, we show that, under off-state stress conditions, the interface damage that is measured by charge-pumping technique is correlated with dielectric breakdown time, as both of them are driven by broken equivSi-O- bonds. 相似文献
Lead sulfide (PbS) and cadmium sulfide (CdS) quantum dots (QDs) are prepared over mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) process. These QDs are exploited as a sensitizer in solid‐state solar cells with 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as a hole conductor. High‐resolution transmission electron microscopy (TEM) images reveal that PbS QDs of around 3 nm in size are distributed homogeneously over the TiO2 surface and are well separated from each other if prepared under common SILAR deposition conditions. The pore size of the TiO2 films and the deposition medium are found to be very critical in determining the overall performance of the solid‐state QD cells. By incorporating promising inorganic QDs (PbS) and an organic hole conductor spiro‐OMeTAD into the solid‐state cells, it is possible to attain an efficiency of over 1% for PbS‐sensitized solid‐state cells after some optimizations. The optimized deposition cycle of the SILAR process for PbS QDs has also been confirmed by transient spectroscopic studies on the hole generation of spiro‐OMeTAD. In addition, it is established that the PbS QD layer plays a role in mediating the interfacial recombination between the spiro‐OMeTAD+ cation and the TiO2 conduction band electron, and that the lifetime of these species can change by around 2 orders of magnitude by varying the number of SILAR cycles used. When a near infrared (NIR)‐absorbing zinc carboxyphthalocyanine dye (TT1) is added on top of the PbS‐sensitized electrode to obtain a panchromatic response, two signals from each component are observed, which results in an improved efficiency. In particular, when a CdS‐sensitized electrode is first prepared, and then co‐sensitized with a squarine dye (SQ1), the resulting color change is clearly an addition of each component and the overall efficiencies are also added in a more synergistic way than those in PbS/TT1‐modified cells because of favorable charge‐transfer energetics. 相似文献
Cognitive radio (CR) technology enables opportunistic exploration of unused licensed channels. By giving secondary users (SUs) the capability to utilize the licensed channels (LCs) when there are no primary users (PUs) present, the CR increases spectrum utilization and ameliorates the problem of spectrum shortage. However, the absence of a central controller in CR ad hoc network (CRAHN) introduces many challenges in the efficient selection of appropriate data and backup channels. Maintenance of the backup channels as well as managing the sudden appearance of PUs are critical issues for effective operation of CR. In this paper, a prioritized medium access control protocol for CRAHN, PCR-MAC, is developed which opportunistically selects the optimal data and backup channels from a list of available channels. We also design a scheme for reliable switching of a SU from the data channel to the backup channel and vice-versa. Thus, PCR-MAC increases network throughput and decreases SUs’ blocking rate. We also develop a Markov chain-based performance analysis model for the proposed PCR-MAC protocol. Our simulations, carried out in \(NS-3\), show that the proposed PCR-MAC outperforms other state-of-the-art opportunistic medium access control protocols for CRAHNs. 相似文献
Identifying compromised accounts on online social networks that are used for phishing attacks or sending spam messages is still one of the most challenging problems of cyber security. In this research, the authors explore an artificial neural network‐based language model to differentiate the writing styles of different users on short text messages. In doing so, the aim is to be able to identify compromised user accounts. The results obtained indicate that one can learn the language model on one dataset and can generalize it to different datasets to identify users with high accuracy and low false alarm rates without any modification to the language model. 相似文献
Security and privacy architecture for various access networks have often been considered on the upper service layers in the form of application and transport security and from lower layers in the form of security over wireless networks. Today there is no trust relationship between the stakeholders of different access network types for e.g. wireless mesh network, wireless PAN, wireless LAN, cellular network, satellite etc. and each have their own security mechanism. What is common for these access networks is the networking layer which is IP based. In order to provide seamless service across these heterogeneous access networks there must be a trust relationship among the stakeholders for authentication, authorization, accounting and billing of end user. However, what is still missing is a general solution which is both adaptable to the network types and conditions and also takes into account end system capabilities as well as enabling inter-domain AAA negotiation. This paper proposes a light-weight AAA infrastructure providing continuous, on-demand, end-to-end security in heterogeneous networks. 相似文献
Wireless Networks - A Wireless Internet-access Mesh NETwork (WIMNET) provides scalable and reliable internet access through the deployment of multiple access points (APs) and gateways (GWs). In... 相似文献
In this paper a novel jamming technique is presented. The idea of the proposed jamming technique is based on adding inphase and quadrature impairments to the jamming signal. The jammer is simply a quadrature phase shift keying signal. The bit error rate probability (BER) of the proposed jamming signal is derived analytically and validated with the aid of the software defined radio SystemVue design software. The standard multi input multi output (MIMO) wireless local area network (WLAN) IEEE802.11n communication system is chosen as the victim system. Its BER performance is simulated in the presence of the proposed jamming signal in multipath fading channel. Finally, the efficiency of the proposed jamming signal on the MIMO WLAN IEEE802.11n communication system is practically measured in the laboratory where a practical experiment is held and the efficiency of the proposed jamming signal is compared with the traditional single tone jamming signal. It will be shown practically that the proposed jamming technique outperforms the traditional single tone jamming signal by nearly 15 dBm on the impact of efficiently jam the MIMO WLAN IEEE802.11n communication system.