首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   10篇
电工技术   2篇
化学工业   75篇
金属工艺   3篇
机械仪表   6篇
建筑科学   1篇
能源动力   26篇
轻工业   16篇
水利工程   2篇
无线电   5篇
一般工业技术   29篇
冶金工业   11篇
原子能技术   3篇
自动化技术   20篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   8篇
  2016年   7篇
  2015年   7篇
  2014年   14篇
  2013年   19篇
  2012年   19篇
  2011年   11篇
  2010年   16篇
  2009年   24篇
  2008年   5篇
  2007年   8篇
  2006年   11篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1984年   1篇
排序方式: 共有199条查询结果,搜索用时 9 毫秒
81.
Power quality improvement with an extended custom power park   总被引:1,自引:0,他引:1  
This paper describes the operation principles of an extended custom power park (CPP). The proposed park is more effective when it is compared to the conventional power parks regarding the yield of improving both current and voltage quality of linear and nonlinear loads using dynamic voltage restorer (DVR), active power filter (APF), static transfer switch (STS) and diesel generator (DG). Moreover, a supervisory power quality control centre is presented to coordinate these custom power (CP) devices by providing pre-specified quality of power. A fast sag/swell detection unit is also presented to improve the system response. The ability of the extended CPP for power quality improvements is further analyzed using PSCAD/EMTDC through a set of simulation tests.  相似文献   
82.
One of the challenges in the development of integrated dark and photofermentative biological hydrogen production systems is the presence of ammonium ions in dark fermentation effluent (DFE). Ammonium strongly inhibits the sequential photofermentation process, and so its removal is required for successful process integration. In this study, the removal of ammonium ions from molasses DFE using a natural zeolite (clinoptilolite) was investigated. The samples were treated with batch suspensions of Na-form clinoptilolite. The ammonium ion concentration could be reduced from 7.60 mM to 1.60 mM and from 12.30 mM to 2.40 mM for two different samples. Photofermentative hydrogen production on treated and untreated molasses DFE samples were investigated in batch photobioreactors by an uptake hydrogenase deleted (hup) mutant strain of Rhodobacter capsulatus. Maximum hydrogen productivities of 1.11 mmol H2/Lc·h and 1.16 mmol H2/Lc·h and molar yields of 79% and 90% were attained in the treated DFE samples, while the untreated samples resulted in no hydrogen production. The results showed that ammonium ions in molasses DFE could be effectively removed using clinoptilolite by applying a cost-effective, simple batch process.  相似文献   
83.
Photofermentative hydrogen production by immobilized Rhodobacter capsulatus YO3 was carried out in a novel photobioreactor in sequential batch mode under indoor and outdoor conditions. Long-term H2 production was realized in a 1.4 L photobioreactor for 64 days using Rhodobacter capsulatus YO3 immobilized with 4% (w/v) agar on 5 mM sucrose and 4 mM glutamate. The highest hydrogen yield (19 mol H2/mol sucrose) and hydrogen productivity (0.73 mmol H2 L?1 h?1) were achieved indoors on 5 mM sucrose. The effect of initial sucrose concentration (5 mM, 10 mM, and 20 mM) on hydrogen production was also investigated. Sustained hydrogen production was carried out under natural, outdoor conditions as well. For the outdoor experiments, the highest hydrogen productivity and yield were obtained as 0.87 ± 0.06 mmol H2 L?1 h?1 and 6.1 ± 0.2 mol H2/mol sucrose, respectively on 10 mM sucrose. Furthermore, this system prevented sudden pH drops and fluctuations caused by the utilization of sucrose throughout the process. These results demonstrate that a proper immobilization setup can lead to long-term efficient and robust hydrogen production even under naturally varying conditions.  相似文献   
84.
Two types of stoving paints have been prepared from Mesua ferrea L. seed oil (MFLSO) modified poly(urethane ester) (PUE) binder systems. One stoving paint system was prepared from partially butylated melamine formaldehyde (MF) resin modified MFLSO-based PUE (70:30 weight ratio) and other one comprised of bisphenol-A-based epoxy resin modified with MFLSO-based PUE (50:50 weight ratio). Paints made with these two resin systems as binders were evaluated against the standard paint system. The physical properties of the paint systems viz. non-volatile content, specific gravity, viscosity, drying time, flexibility, adhesion, scratch hardness, gloss, etc. and chemical properties such as corrosion resistance, salt spray resistance, UV resistance, etc. were measured as per the standard methods and were compared. Thermal stability and surface morphology of the paints were also studied by using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. The performance characteristics of both the test paints were found to be comparable with the corresponding industrial standard paints. Out of the two test paints, the epoxy modified PUE-based stoving paint has been found to be preferred.  相似文献   
85.
The bio-based shape memory hyperbranched polyurethanes (HBPUs) have attracted tremendous attention both from academic and industrial researchers due to their strong potential in biomedical and other advanced applications. In the present investigation HBPUs have been synthesized from poly(??-caprolactone)diol as a macroglycol, butanediol as a chain extender, triethanolamine as a branch generating moiety, monoglyceride of Mesua ferrea L. seed oil as a bio-based chain extender, at different percentages and toluene diisocyanate by a two step one pot A2?+?B3 approach. The structure of the synthesized hyperbranched polyurethane was characterized by FTIR, IH NMR, XRD and SEM studies. 1H NMR study indicates the formation of highly branched structure with degree of branching 0.93 for polyurethane with 5?wt% monoglyceride. TGA results indicated the increment of thermal stability from 185 to 240?°C with the increase of monoglyceride content from (0?C15) wt% for the HBPUs. The shape memory effect of the hyperbranched polyurethane increased with the increase of monoglyceride in the polymer. However, mechanical properties like tensile strength and elongation at break decreased from 19.31 to 11.48?MPa and 835 to 497%, respectively, with the increase in amount of bio-based component. Excellent impact strength and very good chemical resistance were also observed for the hyperbranched polymers. The studied bio-based HBPUs exhibit excellent shape fixity (95?C99)% as well as shape recovery 100%. Thus, the studied HBPUs have the potential to be used as advanced shape memory materials.  相似文献   
86.
The purpose of this study is to increase of the flammability properties of the glass fiber (GF)–reinforced poly (lactic acid)/polycarbonate (PLA/PC) composites. Ammonium polyphosphate (APP) and triphenyl phosphate (TPP) were used as flame retardants that are including the organic phosphor to increase flame retardancy of GF‐reinforced composites. APP, TPP, and APP‐TPP mixture flame retardant including composites were prepared by using extrusion and injection molding methods. The properties of the composites were determined by the tensile test, limiting oxygen index (LOI), differential scanning calorimetry (DSC), and heat release rate (HRR) test. The minimum Tg value was observed for the TPP including PLA/PC composites in DSC analysis. The highest tensile strength was observed in GF‐reinforced PLA/PC composites. In the LOI test, GF including composite was burned with the lowest concentration of oxygen, and burning time was the longest of this composite. However, the shortest burning time was obtained by using the mixture flame retardant system. The flame retardancy properties of GF‐reinforced PLA/PC composite was improved by using mixture flame retardant. When analyzed the results of HRR, time to ignition (TTI), and mass loss rate together, the best value was obtained for the composite including APP.  相似文献   
87.
Exhaustion of fossil fuels, tremendous increase of materials demand, and unpredictable prices of petroleum based products urge upon the sustainable development. Three different epoxy resins have been synthesized from monoglyceride of Mesua ferrea L. seed oil and epichlorohydrin with and without other dihydroxy compound like tetrabromobisphenol‐A (TBPA) and bisphenol‐A (BPA). The synthesized epoxy resin were characterized by measurement of physical properties like epoxy equivalent, viscosity, hydroxyl value, saponification value, acid value, etc., and spectroscopic techniques like FTIR and 1H NMR. High thermostability with initial decompositions temperature of 225–265°C was observed for the cured resins and 75 mol % BPA based resin exhibits the highest thermostability. Newtonian flow behavior was observed for all resins as indicated by the rheometric study (CVO 100). The flame retardency rating of TBPA based epoxy was found to be V1 as tested by UL 94. The performance characteristics as coating materials were studied by the measurement of gloss, impact resistance, scratch hardness, tensile strength, elongation at break, adhesive strength, and chemical resistance. The results indicate the suitability of the synthesized resins as coating materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
88.
89.
Renewable resource tailored tough, elastomeric, biodegradable, smart aliphatic hyperbranched polyurethanes were synthesized using castor oil modified polyol containing fatty amide triol, glycerol, diethanolamine and monoglyceride of sunflower oil via an Ax + By (x , y ≥ 2) approach. To the best of our knowledge, this is the first report of the synthesis of solely aliphatic hyperbranched polyurethanes by employing renewable resources. The synthesized polyurethanes were characterized by Fourier transform infrared, NMR and XRD techniques. The hyperbranched polyurethanes exhibited good mechanical properties, especially elongation at break (668%), toughness (32.16 MJ m?3) and impact resistance (19.02 kJ m?1); also high thermal stability (above 300 °C) and good chemical resistance. Also, the hyperbranched polyurethanes were found to show adequate biodegradability and significant UV light resistance. Moreover, they demonstrated excellent multi‐stimuli‐driven shape recovery ability (up to 97%) under direct sunlight (105 lux), thermal energy (50 °C) and microwave irradiation (450 W). The performance of the hyperbranched polyurethanes was compared with renewable resource based and synthetic linear polyurethane to judge the superiority of the hyperbranched architecture. Therefore, these new aliphatic macromolecules hold significant promise as smart materials for advanced applications. © 2017 Society of Chemical Industry  相似文献   
90.
One of the most important textile materials, poly(ethylene terephthalate) (PET) fiber, was coated with a semi-conductive polyfuran (PFu) by in situ oxidative polymerization using FeCl3 oxidant in solvent mixture of acetonitrile–chloroform. The effects of polymerization conditions such as volume ratios of acetonitrile/chloroform, monomer concentration, and oxidant/monomer mol ratio were investigated on PFu content (%) of the composites. It was observed that pretreatment of PET in dichloromethane increased PFu content and its coating continuity before polymerization. The highest PFu content (12.0%) was obtained using FeCl3/furan mol ratios of 3.5 in acetonitrile/chloroform mixture (5/1). The density values of the composites with different PFu contents were measured. Composite fibers were also subjected to doping processes with HCl and I2 vapors, separately, and it was observed that the surface resistivity of PFu/PET (1012 Ω/cm2) reached to 53 Ω/cm2 after doping with I2. The structural, thermal, and morphological characterization was performed with FTIR, XRD, TGA, and SEM, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号