首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   39篇
电工技术   13篇
综合类   2篇
化学工业   104篇
金属工艺   11篇
机械仪表   12篇
建筑科学   27篇
能源动力   55篇
轻工业   59篇
水利工程   5篇
石油天然气   6篇
无线电   70篇
一般工业技术   140篇
冶金工业   52篇
原子能技术   2篇
自动化技术   101篇
  2024年   3篇
  2023年   8篇
  2022年   10篇
  2021年   24篇
  2020年   27篇
  2019年   20篇
  2018年   24篇
  2017年   31篇
  2016年   37篇
  2015年   13篇
  2014年   34篇
  2013年   59篇
  2012年   37篇
  2011年   50篇
  2010年   35篇
  2009年   49篇
  2008年   40篇
  2007年   33篇
  2006年   20篇
  2005年   18篇
  2004年   12篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  1999年   2篇
  1998年   15篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有659条查询结果,搜索用时 531 毫秒
651.
β-adrenergic receptor (β-AR) stimulation represents a major mechanism of modulating cardiac output. In spite of its fundamental importance, its molecular basis on the level of cell signalling has not been characterised in detail yet. We employed mass spectrometry-based proteome and phosphoproteome analysis using SuperSILAC (spike-in stable isotope labelling by amino acids in cell culture) standardization to generate a comprehensive map of acute phosphoproteome changes in mice upon administration of isoprenaline (ISO), a synthetic β-AR agonist that targets both β1-AR and β2-AR subtypes. Our data describe 8597 quantitated phosphopeptides corresponding to 10,164 known and novel phospho-events from 2975 proteins. In total, 197 of these phospho-events showed significantly altered phosphorylation, indicating an intricate signalling network activated in response to β-AR stimulation. In addition, we unexpectedly detected significant cardiac expression and ISO-induced fragmentation of junctophilin-1, a junctophilin isoform hitherto only thought to be expressed in skeletal muscle. Data are available via ProteomeXchange with identifier PXD025569.  相似文献   
652.
The physico-chemical properties, phytochemicals, mineral contents of tobacco (Nicotiana tabacum L.) seeds grown at Samsun province in Turkey were evaluated. The oil contents of tobacco seeds ranged from 20.6% (control) to 29.0% (microwave-roasted). L*, a* and b* values of tobacco seeds ranged from 32.38 to 35.61; from 6.32 to 6.78; from 13.72 to 14.27, respectively. Total phenolic contents of tobacco seed extract and oils were reported between 31.02 (oven-roasted) and 34.42 mg GAE/100 g (microwave-roasted) to 4.60 (microwave-roasted) and 6.45 mg GAE/100 g (oven-roasted), respectively. Total flavonoid values of raw and roasted tobacco seed extract and oils were determined between 26.62 (oven) and 67.10 mg/100 g (control) to 21.57 (control) and 44.71 mg/100 g (microwave-roasted), respectively. Gallic acid, 3,4-dihydroxybenzoic acid and catechin are the predominant phenolic components of raw and roasted tobacco seed oils. The amounts of oleic and linoleic acid in raw and roasted tobacco seed oils ranged from 10.23% (oven-roasted) to 12.48% (control) and 73.72% (control) to 76.63% (oven-roasted), respectively. The abundant elements found in seeds were K, P, Ca, Mg, S and Fe. The mineral amounts of the roasted seeds were found higher than that of the control. The highest increase was detected in oven roasted tobacco seeds.  相似文献   
653.
In this study, manganese ferrite (MnFe2O4) nanoparticles were produced through flame spray pyrolysis (FSP). To investigate the effects of heat treatment, the nanoparticles were annealed between 400 and 650°C for 4 h in air in a comparative manner. The structural, chemical, morphological, and magnetic properties of the nanoparticles were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometry (VSM), respectively. The XRD results showed that the nanoparticles synthesized by the FSP method exhibited the MnFe2O4 spinel ferrite structure. The annealing process led to the decomposition of MnFe2O4 into various phases. According to the morphological analysis, the as-synthesized particles were hemispherical–cubic in shape and had an average particle size of less than 100 nm. In addition, the chemical bond structures of the nanoparticles were confirmed in detail by XPS elemental analysis. The highest saturation magnetization was recorded as 33.50 emu/g for the as-produced nanoparticles. The saturation magnetization of the nanoparticles decreased with increasing annealing temperature, while coercivity increased.  相似文献   
654.
Structural colorful cholesterics show impressive susceptibility to external stimulation, leading to applications in electro/mechano-chromic devices. However, out-of-plane actuation of structural colorful actuators based on cholesterics and the integration with other stimulation remains underdeveloped. Herein, colorful actuators and motile humidity sensors are developed using humidity-responsive cholesteric liquid crystal networks (CLCNs) and magnetic composites. The developed colorful actuator can exhibit synergistic out-of-plane shape morphing and color change in response to humidity, with CLCNs as colorful artificial muscles. Through the integration with magnetic control, the motile sensor can be navigated to open and confined spaces with the aid of friction to detect local relative humidity. The integration of multi-stimulation actuation of cholesteric magnetic actuators will expand the research frontier of structural colorful actuators and motile sensors for confined spaces.  相似文献   
655.
The present study aimed to examine the effect of pH and time on the final morphology of calcium borate powders. Primarily, aqueous solutions that mainly consisted of borax and calcium chloride were prepared with five different pH values varying between 2 and 15. Hydrothermal synthesis temperature was determined as 200°C, and four different times from 30 min to 24 h were selected. Phase formation and powder morphology were examined via an X-ray diffractometer and scanning electron microscopy. Fourier transform infrared spectroscopy was used to identify the type of borate groups. Results revealed that pH directly determines the growth mechanism of calcium borate crystals. Lower pH induced nonclassical growth by forming self-assembled nano-plates. Individual, rodlike particles were observed for alkali solution. At weak basic conditions, priceite (4CaO·5B2O3·7H2O) and alkali condition parasibirskite (2CaO·B2O3·H2O) phases were obtained.  相似文献   
656.
Silicon - In this study, structural and electrical properties of Ag/TiO2/n-InP/Au Schottky barrier diodes, constructed with sputtering method on n-InP wafer, are investigated. Particle size, d-...  相似文献   
657.
Research on molecular crystals exhibiting light-driven actuation has made remarkable progress through the development of various molecules and the identification of driving mechanisms. However, crystals developed to date have been driven mainly by ultraviolet (UV) or blue light irradiation, and driving by red or near-infrared (NIR) light has not been attempted yet. Herein, a broad-wavelength light-driven molecular crystals that exhibit high-speed bending by photothermal effect is developed. Titanium carbide (Ti3C2Tx) MXene nanosheets are integrated into salicylideneaniline crystals to extend the wavelength range that causes photothermally driven bending to UV, visible, and NIR light. In addition, unlike the thin pristine molecular crystals that show slow photoisomerization-induced bending only under UV light, the MXene layer enables the molecular crystals to be actuated rapidly regardless of their thickness over a wide range of wavelengths. The hybridization of molecular crystals with MXene, which exhibits strong biocompatibility as well as NIR light-driven photothermal effect, allows for the bending of the hybrid crystals inside agar phantoms mimicking biological tissue. Last, it is confirmed that MXene hybridization can be extended to common molecular crystals including various salicylideneaniline and anisole derivatives.  相似文献   
658.
Antifouling paints are used to protect the surface against these organisms such as algae, sea squirts, and barnacles. According to previous research, fish and seaweeds do not adhere to submerged surfaces using wet and soft hydrogels. The aim of this study is to investigate the temperature effect on the performance of antifouling composites to develop new useful antifouling composites for shipping sector. In this swelling experiment, the behavior of hydrogels produced from polyacrylamide (PAAm) and graphene oxide (GO) was investigated at different temperatures. Free-radical cross-linking copolymerization formed composite, using acrylamide, ammonium persulfate, N, N′-methylenebisacrylamide (BIS, Merck), and graphene oxide with various contents. The steady-state fluorescence technique was used for studying the swelling of PAAm-GO composites at various temperatures in pure water. When pyranine fluorescence intensity, I was measured, it decreased until swelling equilibrium was achieved. After the swelling experiment was started, the fluorescence emission (Iem) and scattering light intensities, Isc from different GO content hydrogels were observed by real-time monitoring at various temperatures. Li-Tanaka and Fickian models were used to determine the diffusion coefficients for the swelling experiments in distilled and Marmara Sea Water for 8 and 50 μl of GO content hydrogels, respectively. According to literature, PAAm is utilized as a surface coating material to reduce biofouling, for this reason, this research will show a way to be able to use PAAm inside antifouling paints material for the marine industry.  相似文献   
659.
The rapid growth in the miniaturized mechanical and electronic devices industry has created the need for temporary attachment systems that can carry out pick-and-place and transfer printing tasks for fragile and tiny parts. Current systems are limited by a fundamental trade-off between adhesive strength and state-changing trigger force, which causes the need for a rapidly switchable adhesive. In this study, an elastomeric microstructure is presented combining a trapezoidal-prism-shaped (TPS) and a mushroom-shaped microstructure, which overcomes the trade-off with the help of the TPS structure. The optimal design exhibits a strong adhesive strength of 87.8 kPa and a negligible detachment strength of <0.07 kPa with a low trigger shear stress of 10.7 kPa on smooth glass surfaces. The large tip-to-stem ratio (50 to 20 µm) enhances the suction effect, allowing the microstructure to maintain its adhesive performance even in wet conditions. Pick-and-place manipulation tasks of a single and an array of ultralight parts from micrometer to millimeter scales are performed to demonstrate the capability of handling fragile and tiny parts. Moreover, it demonstrates the ability to transfer parts across water and air interfaces. This proposed microstructure offers a facile solution for manipulating microscale fragile parts in dry and wet conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号