首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5521篇
  免费   471篇
  国内免费   112篇
电工技术   244篇
综合类   202篇
化学工业   951篇
金属工艺   196篇
机械仪表   181篇
建筑科学   346篇
矿业工程   53篇
能源动力   302篇
轻工业   454篇
水利工程   98篇
石油天然气   176篇
武器工业   4篇
无线电   644篇
一般工业技术   812篇
冶金工业   359篇
原子能技术   20篇
自动化技术   1062篇
  2024年   17篇
  2023年   93篇
  2022年   170篇
  2021年   222篇
  2020年   173篇
  2019年   176篇
  2018年   219篇
  2017年   202篇
  2016年   238篇
  2015年   217篇
  2014年   230篇
  2013年   425篇
  2012年   330篇
  2011年   418篇
  2010年   340篇
  2009年   337篇
  2008年   279篇
  2007年   237篇
  2006年   235篇
  2005年   186篇
  2004年   127篇
  2003年   145篇
  2002年   193篇
  2001年   141篇
  2000年   103篇
  1999年   59篇
  1998年   88篇
  1997年   65篇
  1996年   55篇
  1995年   58篇
  1994年   50篇
  1993年   37篇
  1992年   21篇
  1991年   8篇
  1990年   16篇
  1989年   9篇
  1988年   14篇
  1987年   14篇
  1986年   12篇
  1985年   9篇
  1984年   22篇
  1983年   10篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   9篇
  1978年   10篇
  1977年   9篇
  1976年   13篇
  1975年   7篇
排序方式: 共有6104条查询结果,搜索用时 31 毫秒
991.
In this paper, we report on the effect of chemical vapor etching-based porous silicon (PS) on the performance of multicrystalline silicon solar cells performed via deep n+/p junction-type structures. Chemical vapor etching of silicon leads to the formation of porous silicon (PS) nanostructures that dramatically decrease the surface reflectivity from 30% to about 8%, and increase the minority carrier diffusion lengths from 90 μm to 170 μm. As a result, the short-circuit current density was improved by more than 20% and the fill factor (FF) by about a 10%. An enhancement of the photovoltaic conversion energy efficiency of the solar cells from 7% to 10% was observed. This low-cost PS formation process can be applied in the photovoltaic cell technology as a standard procedure.  相似文献   
992.
Ben Xu  Pei-Wen Li  Cho Lik Chan 《Solar Energy》2012,86(6):1709-1724
In a typical thermal energy storage system, a heat transfer fluid is usually used to deposit/extract heat when it flows through a packed bed of solid thermal storage material. A one-dimensional model of the heat transfer and energy storage/extraction for a packed-bed thermal storage system has been developed previously by the authors. The model treats the transient heat conduction in the thermal storage material by using the lumped capacitance method, which is not valid when the Biot number is large. The current work presents an effective heat transfer coefficient between the solid and fluid for large Biot numbers. With the corrected heat transfer coefficient, the lumped capacitance method can be applied to model the thermal storage in a wide range of Biot numbers. Four typical structures for the solid thermal storage material are considered. Formulas for the effective heat transfer coefficient (and effective Biot number) are presented. To verify the prediction by the lumped capacitance method using the effective heat transfer coefficient, we compare the results to the corresponding analytical solutions. The results are in very good agreement. The effective heat transfer coefficient extended the validity of the lumped capacitance method to large Biot numbers, which is of significance to the analysis of thermal energy storage systems.  相似文献   
993.
994.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound was prepared and characterized by electrical technique. The temperature dependence of the dielectric permittivity shows that this compound is ferroelectric below T = 268 K. The two semi-circles observed in the complex impedance identify the presence of the grain interior and grain boundary contributions to the electrical response in the material. The equivalent circuit is modeled by a combination series of two parallel RP–CPE circuits. The frequency dependent conductivity is interpreted in term of Jonscher's law. The modulus plots can be characterized by the empirical Kohlrausch–Williams–Watts (K.W.W.) function: ?(t) = exp [(−t/τ)β]. The temperature dependence of the alternative current conductivity (σp), direct current conductivity (σdc) and the relaxation frequency (fp) confirm the presence of the ferroelectric–paraelectric phase transition.  相似文献   
995.
996.
This paper reports large light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites. Homogeneous mixtures of GNP/polydimethylsiloxane (PDMS) composites (0.1-5 wt%) were prepared and their infrared (IR) mechanical responses studied with increasing pre-strains. Using IR illumination, a photomechanically induced change in stress of four orders of magnitude as compared to pristine PDMS polymer was measured. The actuation responses of the graphene polymer composites depended on the applied pre-strains. At low levels of pre-strain (3-9%) the actuators showed reversible expansion while at high levels (15-40%) the actuators exhibited reversible contraction. The GNP/PDMS composites exhibited higher actuation stresses compared to other forms of nanostructured carbon/PDMS composites, including carbon nanotubes (CNTs), for the same fabrication method. An extraordinary optical-to-mechanical energy conversion factor (η(M)) of 7-9 MPa W(-1) for GNP-based polymer composite actuators is reported.  相似文献   
997.
We present an ultrasonic-based Lamb wave propagation method for identifying and measuring the damage location in a material as a basis for structural health monitoring (SHM). Lamb waves can propagate in a structure via mode conversion and reflection from the surfaces of the structure, and can lead to interference patterns as a resulting wave vector propagates along the structure. We determined the experimental and analytical effects of various parameters on the sensitivity of damage detection. A methodology is proposed for estimating and measuring the location of damage in test specimens. An experimental setup is used for generating Ao? Lamb waves by calibrating ultrasonic pulse generation for optimal values of parameters. Materials with different damage levels are tested in their undamaged and damaged conditions, and the effects of the parameters on the generated waves in test specimens are observed experimentally.  相似文献   
998.
Folate functionalized nanoparticles (NPs) that contain fluorogens with aggregation‐induced emission (AIE) characteristics are fabricated to show bright far‐red/near‐infrared fluorescence, a large two‐photon absorption cross section and low cytotoxicity, which are internalized into MCF‐7 cancer cells mainly through caveolae‐mediated endocytosis. One‐photon excited in vivo fluorescence imaging illustrates that these AIE NPs can accumulate in a tumor and two‐photon excited ex vivo tumor tissue imaging reveals that they can be easily detected in the tumor mass at a depth of 400 μm. These studies indicate that AIE NPs are promising alternatives to conventional TPA probes for biological imaging.  相似文献   
999.
Herein is reported the synthesis of gadolinium ion (Gd(III))‐chelated hyperbranched conjugated polyelectrolyte (HCPE‐Gd) and its application in fluorescence and magnetic resonance (MR) dual imaging in live animals. The synthesized HCPE‐Gd forms nanospheres with an average diameter of ~42 nm measured by laser light scattering and a quantum yield of 10% in aqueous solution. The absorption spectrum of HCPE‐Gd has two maxima at 318 and 417 nm, and its photoluminescence maximum centers at 591 nm. Confocal laser scanning microscopy studies indicate that the HCPE‐Gd is internalized in MCF‐7 cancer cell cytoplasm with good photostability and low cytotoxicity. Further fluorescence and MR imaging studies on hepatoma H22 tumor‐bearing mouse model reveal that HCPE‐Gd can serve as an efficient optical/MR dual‐modal imaging nanoprobe for in vivo cancer diagnosis.  相似文献   
1000.
The Gordonia strain JW8 was successfully isolated, characterized, and tested for bioaugmentation of pulp and paper wastewater. With significant degradation of alkaline lignin, JW8 has the potential to render pulp and paper wastewater more biodegradable, which is of much interest to wastewater treatment. The sequencing batch reactor (SBR) inoculated with JW8 significantly enhanced the organic pollutants removal of pulp and paper wastewater compared to the control, achieving the best removal rates of 96.4% and 87.8% for biochemical oxygen demand (BOD) and chemical oxygen demand (COD), respectively. A considerable decrease of BOD/COD ratio in wastewater was also achieved in the bioaugmented SBR. However, a drawback caused by JW8 inoculation was the resultant high sludge volume index and biological foaming and bulking, which can be controlled by food/mass adjustment. The denaturing gradient gel electrophoresis analysis suggested that bioaugmentation with JW8 had a slight effect on the microbial dynamics, but more research is needed to understand the relationship between the microbial dynamics and pollutant removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号