首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5004篇
  免费   170篇
  国内免费   6篇
电工技术   63篇
综合类   2篇
化学工业   1242篇
金属工艺   76篇
机械仪表   113篇
建筑科学   235篇
矿业工程   7篇
能源动力   175篇
轻工业   367篇
水利工程   28篇
石油天然气   11篇
无线电   577篇
一般工业技术   856篇
冶金工业   547篇
原子能技术   61篇
自动化技术   820篇
  2022年   55篇
  2021年   81篇
  2020年   47篇
  2019年   61篇
  2018年   85篇
  2017年   102篇
  2016年   125篇
  2015年   88篇
  2014年   113篇
  2013年   255篇
  2012年   213篇
  2011年   258篇
  2010年   212篇
  2009年   222篇
  2008年   212篇
  2007年   219篇
  2006年   224篇
  2005年   162篇
  2004年   175篇
  2003年   143篇
  2002年   148篇
  2001年   111篇
  2000年   104篇
  1999年   82篇
  1998年   159篇
  1997年   137篇
  1996年   110篇
  1995年   103篇
  1994年   97篇
  1993年   84篇
  1992年   55篇
  1991年   40篇
  1990年   50篇
  1989年   43篇
  1988年   46篇
  1987年   45篇
  1986年   26篇
  1985年   79篇
  1984年   58篇
  1983年   54篇
  1982年   46篇
  1981年   80篇
  1980年   46篇
  1979年   50篇
  1978年   17篇
  1977年   37篇
  1976年   44篇
  1975年   41篇
  1974年   30篇
  1973年   26篇
排序方式: 共有5180条查询结果,搜索用时 13 毫秒
151.
The catalytic activity of Pt catalysts supported on high surface area tin(IV) oxide in the complete oxidation of CH4 traces under lean conditions at low temperature was studied in the absence and in the presence of water (10 vol.%) or H2S (100 vol.ppm). Their catalytic properties were compared to those of Pd/Al2O3 and Pt/Al2O3. In the absence of H2S in the feed, Pt/SnO2appears as a very promising catalyst for CH4 oxidation, being even significantly more active under wet conditions than the best reference catalyst, Pd/Al2O3. Catalysts steamed-aged at 873 K were also studied in order to simulate long term ageing in real lean-burn NGV exhaust conditions. To this respect, Pt/SnO2 is slightly less resistant than Pd/Al2O3. In the presence of H2S, Pt/SnO2catalysts are rapidly and almost completely poisoned, comparably to Pd/Al2O3and the catalytic activity is hardly restored upon oxidising treatment below 773 K. A synergetic effect between Pt and specific surface SnO2sites active in CH4oxidation is proposed to explain the superior catalytic behaviour of Pt/SnO2.  相似文献   
152.
This study examines the influence of three different minerals, that is, clay, calcium carbonate, and quartz on the physical, thermal, and mechanical properties of poly(lactic acid) (PLA)/poly(methyl methacrylate) blend. Rheological behavior and phase structure were initially studied by small-amplitude oscillatory shear rheology. Clay- and quartz-filled materials presented an increase in viscosity at low frequency associated with the presence of a yield stress. However, this behavior was not observed for calcium carbonate filled materials due to a matrix degradation effect. To elucidate this aspect, thermal stability and thermal properties were examined by thermogravimetric analysis and differential scanning calorimetry, showing that calcium carbonate promotes degradation of the PLA phase. No nucleating effect was observed in the presence of the minerals. Dynamical mechanical analysis and mechanical characterization revealed an increase of the overall softening temperature and, a reinforcing effect for clay- and quartz-based composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46927.  相似文献   
153.

Background  

carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis.  相似文献   
154.
The excellent suitability of immobilized Candida antarctica lipase B (Novozym 435) catalyst to carry out the synthesis of methyl oleate (biodiesel) by methanolysis of triolein in ILs based on imidazolium cations with large alkyl side chain (from C12 to C18) has been demonstrated at 60 and 85 °C. The phase behaviour of IL/triolein/methanol and IL/methyl oleate mixtures were studied at different concentrations and temperatures, the best results (up to 98.6% biodiesel yield after 6 h) being obtained for ILs able to provide monophasic reaction systems, i.e. 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide). A continuous enzymatic reactor, based on biocatalysts particles coated with hydrophobic ILs, for biodiesel synthesis in supercritical carbon dioxide was studied at 60 °C and 180 bar. The operational stability of the immobilized lipase was improved by its coating with ILs, i.e. 1-methyl-3-octadecylimidazolium hexafluorophosphate, leading to a two-phase systems with respect to the biodiesel product, which showed an excellent catalytic behaviour in continuous operation under supercritical conditions (up to 82% biodiesel yield after 12 cycles of 4 h).  相似文献   
155.
Microcellular foaming of commodity amorphous polymers, poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) was studied in supercritical CO2 via a batch one-step process in the presence of block copolymers able to change their foaming behaviour and therefore the porous structures. Triblock (styrene-co-butadiene-co-methylmethacrylate SBM, methylmethacrylate-co-butylacrylate-co-methylmethacrylate MAM) terpolymers were blended to PS or PMMA by extrusion. They showed advantages compared to classical PS-PMMA polymer blends in terms of cell size control and reduction of cell size. Foaming is carried out on bulk injection molded samples which were saturated under high pressures of CO2 (300 bars) at different temperatures (25° C to 80 °C) and different depressurization rates (pressure drop rates from 150 bar/min to 12 bar/min). Very distinct cellular structures and densities were controlled by varying either the copolymer type or the foaming conditions (T,P). Cell sizes ranged from 0.2 μm to 200 μm, and densities from 0.30 g/cm3 to 1 g/cm3 in the polymers considered. Particularly, when triblock copolymers were able to self organize (nanostructuring) in a polymer matrix, they became phase separated at a nanometer level, presenting nanostructured polymers matrixes. To conclude the study, a possible nanostructuring mechanism is suggested based on the interplay between rubbery and highly CO2-philic blocks/rigid and less CO2-philic blocks. It is demonstrated that block copolymer additives are a good pathway towards micro and ultra microcellular supercritical CO2 foaming of amorphous polymers.  相似文献   
156.
Short chemical syntheses were developed to produce a new set of surfactants from uronic acids derived from widely available raw materials. Three different strategies were used to synthesize uronic amide derivatives, the structures of which were totally characterized by spectrometric methods (IR, MS, 1H-RMN and 13C-RMN). The best one, using an acid chloride as the synthetic intermediate, furnished the expected amides as a mixture of anomers in 46–58% global yield. Surface-active properties (CMC, γcmc, Γmax, A min) of homologous series of uronic acid N-alkylamides from C8 to C18 were also assessed. In general, these sugar-based surfactants exhibited good surface-activities, and appeared as valuable nonionic surfactants compared to octylphenol 9–10 ethylene oxide condensate, the most well-known nonionic surfactant. Increasing the alkyl chain length influenced the CMC values for both glucuronic and galacturonic N-alkylamide derivatives. The galacturonic N-alkylamides decreased γcmc at slower values than their counterpart’s glucuronic N-alkylamides.  相似文献   
157.
158.
159.
Pressure‐sensitive polymers that simultaneously present reasonable electrical conducting properties, useful thermosetting behavior, and softness are hard to develop. To combine these properties into a single material, a cardanol‐based phenolic resin was prepared and blended in situ with polyaniline (PAni). The final polymer blend was composed of a soft solid material that could not be dissolved in ordinary solvents. Samples were characterized through X‐ray scattering, Fourier transform infrared (FTIR) spectroscopy, and electrical conductivity and pressure sensitivity measurements. FTIR results indicate that the insertion of PAni into the blends did not change the chemical nature of the resin. According to wide‐angle X‐ray scattering results, PAni was dispersed homogeneously in the final polymer samples; this improved the sensitivity of the electrical conductivity to pressure variations, as confirmed through electromechanical tests. Pressure sensitivity and electromechanical analyses indicated that the produced blends could be used as pressure‐sensing materials. Among the tested materials, the blends containing 5 wt % PAni·H2SO4 presented the largest compression sensitivity values. Finally, it was shown for the first time through XRD analyses under pressure that PAni chains were considerably disturbed by compressive stresses. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
160.
The article deals with the effect of processing procedures and conditions on structural, morphological, and rheological properties of ternary blends composed of polyethylene (PE), polyamide (PA)‐12, and organically modified montmorillonite nanoclay with selective affinity. Samples were prepared from PE/PA and PA/PE blends, either by simultaneous mixing or from a polymer/clay masterbatch, using two processing conditions. The results have shown the existence of a weight fraction threshold, above which no significant processing effect was observed. Below this weight fraction threshold, the results tend to underline the significant role of two parameters that depend on processing procedures and/or conditions: the contact time between PE and PA phases and the contact time between clay and PA. Clay structure, blend morphology, and rheological properties were all shown to depend on these two parameters, and also on the nature of the matrix (PE or PA), because of the selective affinity of clay toward polymer phases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号