首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2212篇
  免费   63篇
  国内免费   7篇
电工技术   46篇
综合类   1篇
化学工业   348篇
金属工艺   46篇
机械仪表   50篇
建筑科学   32篇
矿业工程   1篇
能源动力   72篇
轻工业   61篇
水利工程   3篇
无线电   529篇
一般工业技术   500篇
冶金工业   168篇
原子能技术   16篇
自动化技术   409篇
  2023年   7篇
  2022年   23篇
  2021年   38篇
  2020年   23篇
  2019年   27篇
  2018年   34篇
  2017年   28篇
  2016年   48篇
  2015年   35篇
  2014年   73篇
  2013年   194篇
  2012年   127篇
  2011年   136篇
  2010年   104篇
  2009年   108篇
  2008年   141篇
  2007年   89篇
  2006年   86篇
  2005年   81篇
  2004年   77篇
  2003年   72篇
  2002年   59篇
  2001年   59篇
  2000年   51篇
  1999年   63篇
  1998年   84篇
  1997年   61篇
  1996年   69篇
  1995年   34篇
  1994年   38篇
  1993年   29篇
  1992年   21篇
  1991年   23篇
  1990年   17篇
  1989年   14篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2282条查询结果,搜索用时 78 毫秒
101.
Tert-butyl(2-ethylhexyl)monoperoxy carbonate (TBEHC) 95 mass% is intrinsically a very unstable substance that can induce self-decomposition even under normal atmospheric condition. During storage, TBEHC 95mass% can release an enormous amount of heat if the temperature is higher than the recommended storage temperature, due to the self-accelerating reaction having been ignited. In this study, TBEHC 95mass% was tested by differential scanning calorimetry (DSC) under five heating rates (1, 2, 4, 6, and 8 °C/min) and four isothermal conditions (120, 125, 130, and 135 °C) to evaluate the basic kinetic and safety parameters of time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), and temperature of no return (TNR). Under runaway reaction TBEHC 95 mass% releases a great quantity of heat. This study establishes an important guiding principle for related manufacturing processes worldwide.  相似文献   
102.
This study developed a system monitoring the electric discharge machine's (EDM) discharge energy and success rate to replace conventional oscilloscope observation. By using logic circuit, the signals are transmitted to the PC monitoring platform in order to display the discharge success times, discharge success rate, and electrode's consumption energy. The advantage of the proposed system is the capability to observe real-time discharges and record the experimental conditions, as well as optimize the discharge parameter settings. The experimental results suggest that, in the preparation of nanosilver colloid, the cost-performance of Ton–Toff at 10–100 µs is the optimal setting. The monitoring system also can take advantage of the discharge success rate to control the energy consumption of the electrode to obtain the standardization of products. The results suggest that, while discharge success rate, electrode's weight loss and wavelength of the absorption peak are considerably accurate, but concentration accuracy is relatively poor. The discharge success rate monitoring system is an innovative method that can help to realize electric discharge processing, optimize product quality, and it may be a powerful processing tool in the future.  相似文献   
103.
This article presents a report on APNOMS 2011, which was held September 21–23, 2011 in Taipei, Taiwan. The theme of APNOMS 2011 was “Managing Clouds, Smart Networks and Services.”  相似文献   
104.
Abstract

In this paper, we present a multi‐purpose medical diagnostic system named AEA — the Acute Exanthem Advisor, and the methodologies of its implementation. AEA provides an accurate diagnosis of acute exanthemas and a complete environment including a user‐friendly interface, reviewing function, record keeping function and explanation function. Therefore, it may serve as an assistant, a record keeper or an educational tool. A prediction program is also provided which is capable of predicting the number of potential patients who are going to have acute exanthemas in the near future. To illustrate the processes of the consultation and the prediction of the AEA, an example is given. Finally, for the 25 different test cases given to the diagnosticians and the AEA, the answers are almost the same, so we can conclude that the performance of the AEA is satisfactory. Now, we are trying to extend the AEA system to be a medical diagnostic net for acute exanthemas, which will be able to be remote accessed through network communications.  相似文献   
105.
ZnO nanowire arrays have been grown on the ZnO film-coated silicon (100) substrates by hydrothermal method, and the deposited nanowires are found to have a uniform size distribution with sharp hexagonal-shaped tips. The structural and optical properties of the nanowires were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) techniques. The XRD and SEM results demonstrate that the well-aligned ZnO nanowires are single crystalline structure formed along the c-axis orientation. TEM analysis further confirms that the ZnO nanowires are highly preferred grown along the (002) crystal plane. The spacing between adjacent (002) lattice planes is estimated as 0.52 nm. The optical properties of the nanowires were measured using CL after annealing in oxygen and nitrogen atmospheres at 550 °C for various times. The CL spectra in the visible spectrum exhibit two weak deep-level emission bands that may be attributed to the intrinsic or extrinsic defects. It can be observed that the ZnO nanowires show different optical behaviors after various annealing times. The dependence of the optical properties on the annealing conditions is also discussed.  相似文献   
106.
107.
The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3–24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.  相似文献   
108.
A structural design featuring rattle‐type silver/titania (Ag/TiO2) core/shell, that is, Ag@TiO2, composite microcapsules is produced. The TiO2 shell protects the encapsulated, movable Ag nanoparticles from breaking away under moderate loading, minimizing hence adverse environmental and biological exposure due to the metal loss, whereas the mesoporous shell serves as conduits for Ag ions released from the caged Ag nanoparticles to kill Escherichia coli in aqueous solutions under dark condition. The anatase TiO2 shell imparts an additional, synergistic photocatalysis activity under ultraviolet irradiation. A pronouncedly enhanced photocatalysis activity results when the Ag@TiO2 composite capsules were thermally annealed under vacuum. This “rattle‐in‐ball” hybrid architecture enables bifunctional bactericide and photocatalysis capability under both light and dark conditions, as well as mitigated environmental and biological impact in practical use.  相似文献   
109.
One major problem that arises in the design of plastic parts, especially those that are fiber reinforced, is the change of shape and dimension as a result of shrinkage and warpage. These material inhomogeneities are caused by flowinduced fiber orientation, curing, poor thermal mold lay-out, and other processing conditions. This paper presents a simulation that predicts shirnkage and warpage of 3-D compression molded fiber reinforced composite parts. The simulation represents the structure with the 3-noded shell elements used in mold filling simulations. The calculated results indicate that fiber orientation strongly affect the final properties, which vary with different chage locations, have a significant effect on warpage. Unsymmetric curing, caused by uneven mold temperatures, could lead to a thermal moment that could possibly help reduce warpage.  相似文献   
110.
Interface control remains a top challenge of solution-processed organic light emitting diodes (OLED) stacks since the device performance heavily relies on it. Film stability of an inkjet deposited and crosslinked layer against subsequent exposure to a suitable inkjet printed solvent has been investigated. Impact of processing solvent (solvent used to prepare the polymer layer) on solution-cast thin film properties has already been shown for polymer films. To our knowledge, this study is the first one analyzing thin films stability against solvent exposure using technology relevant materials processed via inkjet printing (IJP). The outcome of this research showed that the stability of the crosslinked films is affected by the solvent used for ink formulation. These findings are of great interest for multilayered semiconductors devices, such as OLEDs, field-effect transistors and dye-sensitized solar cells. Differential scanning calorimetry (DSC) was used to quantify the efficiency of the polymer crosslinking reaction in pure powder and in thin films, as processed from different solvents. Crosslinking efficiency measured by DSC correlated well with the deformation induced by the solvent and observed on layer surfaces. The interaction in solution between polymer and solvent has also been evaluated to explain its impact on thin film stability against successive solvent printing. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48895.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号