In the current AASHTO LRFD, the arch design formula is based on the bilinear interaction relationship between two extreme cases of the axial and the flexural strength. However, this method is not suitable for the design of the shallow arch which may buckle in a symmetric snap-through mode. Also, the use of the constant reduction factor for the design of arches leads to a conservative design. This paper investigates the in-plane buckling strength and design of parabolic arches. Firstly, the thresholds for the different buckling modes of shallow parabolic arches are summarized and boundaries for the deep and shallow arches are reported. The inelastic strengths of parabolic deep arches based on the finite element analyses are then compared with those presented in AASHTO LRFD. From the results, it is found that AASHTO LRFD provides good predictions of buckling strengths for the parabolic arches under only axial compression, while the bilinear interaction relationship provides conservative values for the in-plane strength of parabolic arches due to the use of constant reduction factors that can be applied regardless of loading and boundary conditions. The modified formulas for reduction factors are proposed for various loading and boundary conditions in this study. It is found that modified formulas for reduction factors show good match with the results obtained from finite element analyses. 相似文献
A double-skin system (double-glazed external wall) is an effective passive system that can be used to decrease solar heat gain into buildings. Detailed information on the thermal distribution of double-skin facades is necessary to design better systems that can provide thermal comfort and conserve energy. In this study, the three-dimensional thermal characteristics of double-skin facades that had the ventilation opening installed partially and were screened partially by the adjacent buildings were investigated by field measurements. To that end, field measurements were carried out on the double-skin exterior wall (9.4 m high and 27.0 m wide) installed in an atrium located in the west of an existing building during cooling period for typical summer conditions. Maximum air change rate of natural ventilation through the bottom opening up to the top opening is about 20–25 [1/h], the reduction ratio of total solar heat gain compared with those of non-natural ventilation is about 25%. The exhaust solar heat gain is about 100 W/m2 per inner glass surface area of the double-skin facades. Air temperature distribution of air space in the double skin was ranged from 30 °C to 44 °C, and heat gain difference ranged from 50 W/m2 to 130 W/m2. The influence of the ventilation openings and the shade conditions on temperature distribution of double skin is found to be significant and the double-skin system was verified to reduce the cooling loads effectively. 相似文献
The objective of this paper is to examine the influence of injection molding parameters on the core shift to obtain the optimal
injection molding conditions of a plastic battery case with thin and deep walls using numerical analyses and experiments.
Unlike conventional injection molding analysis, the flexible parts of the mold were represented by 3-D tetrahedron meshes
to consider the core shift in the numerical analysis. The design of experiments (DOE) was used to estimate the proper molding
conditions that minimize the core shift and a dominant parameter. The results of the DOE showed that the dominant parameter
is the injection pressure, and the core shift decreases when the injection pressure decreases. In addition, it was shown that
the initial mold temperature and the injection time hardly affect the core shift. The results of the experiments showed that
products without warpage are manufactured when the injection pressure is nearly 32 MPa. Comparing the results of the analyses
with those of the experiments, optimal injection molding conditions were determined. In addition, it was shown that the core
shift should be considered to simulate the injection molding process of a plastic battery case with thin and deep walls. 相似文献
In this study the modified weighted sum of gray gases model (WSGGM) using the gray gas regrouping technique and the discrete
ordinates interpolation method (DOIM) are applied to analyze the radiative transfer within an irregular 3-D enclosure filled
with non-gray gas mixture of CO2, H2O and N2. The computer code developed in this study is successfully applied for solving the non-gray gas radiation within a 3-D rectangular
enclosure and the gray gas radiation within an irregular 3-D enclosure by showing fairly good agreements with the existing
results. In this paper the radiative transfer within an irregular 3-D enclosure filled with non-isothermal non-gray gases
with uniform mixtures of CO2, H2O and N2 is studied to demonstrate the applicability of the modified sum of gray gases model for irregular systems and to examine
the effect of the concentrations of CO2 and H2O on the radiative transfer within modern combustors. Results show that the wall heat fluxes and the radiative heat source
terms are increased as the concentrations of CO2 and H2O are increased. Results also show that the radiative fluxes caused by the mixture gases with high concentrations CO2 and H2O which can be observed in oxy-fuel combustion systems can reach up to nearly twice of those found in ordinary air-fuel combustion
systems. 相似文献
Journal of Mechanical Science and Technology - The dynamics of the Burke-Schumann flame in terms of the Péclet number variation were investigated. The effect of the Péclet number on the... 相似文献
A numerical study is conducted on the secondary side screw-type tube inlet orifice design of a once-through steam generator. An orifice length criterion for flow stabilization is derived by introducing the hydraulic resistance ratio of the orifice and the subcooled region to the two-phase and superheated regions. Various tube plugging conditions and power levels are considered, and the secondary coolant pressure at the tube outlet is adjusted to maintain a constant thermal power. Comprehensive numerical solutions are acquired to evaluate the minimum orifice length under various operating conditions. The results obtained show that a constant thermal power is maintained by properly adjusting the secondary coolant outlet pressure with a variation of the superheat degree and secondary coolant pressure drop when the steam generator operates at high power level. The steam generator performance is analyzed according to the tube plugging condition in terms of the degree of superheat, secondary side pressure drop, temperature distribution, and quality distribution. The secondary side outlet pressure curve for the constant thermal power operation is obtained, and the required minimum orifice length to suppress the flow oscillation below the allowable level is evaluated. The lowest power level results in the highest minimum orifice length, and non-plugging condition provides a limiting case for the orifice length criterion except near the 100 % power level.
A new mixed-valent iron MOF, formulated as Fe3O(F4BDC)3(H2O)3·(DMF)3.5 (1), has been synthesized by using a perfluorinated linear dicarboxylate to link trigonal prismatic Fe3(μ3-O)(O2C–)6 clusters. The structure refinement based on single crystal X-ray diffraction data collected from 1 reveals the material exhibits the acs topology with large channels along the crystallographic c-axis. Due to the presence of fluorine atoms the organic link, 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (F4BDC), has a 63° torsion angle between the carboxylate and aromatic planes, resulting in larger channels compared to those in the isoreticular material MOF-235. While few iron-based MOFs have demonstrated porosity, nitrogen and hydrogen sorption experiments carried out at 77 K proved the porosity of outgassed 1, which has a Langmuir surface are of 635 m2/g and a gravimetric capacity of 0.9 wt% of hydrogen at 1 bar. 相似文献
Carbon black has recently been reported to act as an effective catalyst for methane decomposition and to exhibit stable catalytic behavior despite carbon deposition, and thus it can be used for CO2-free production of hydrogen from natural gas. In this work, various carbon blacks with different primary particle size were investigated with respect to methane decomposition under atmospheric pressure from 1123 to 1223 K. Catalytic characteristics, such as activity, activation energy and reaction order, were investigated and compared. It was observed that with decreasing primary particle size (or increasing specific surface area), the specific activity increased and the activation energy decreased. The reaction orders for various pelletized, rubber-reinforcing carbon blacks were 0.6–0.7, about the same regardless of the primary particle size, while they were near 1 for fluffy carbon blacks. Fluffy carbon black showed higher activity and activation energy than the pelletized carbon black of the same primary particle size. Changes of the surface morphology during carbon deposition were observed by TEM. Variations of the number of active sites were discussed in regard of the primary particle size, carbon deposition and binder. The presence of different types of active sites was also suggested. 相似文献
The ZrO2-pillared clay with high acidic property has been prepared by reacting 1 wt% colloidal suspension of Na+-montmorillonite with 1 N aqueous solution of ZrOCl2·8H2O and by subsequent heating. The evolution of local structure around zirconium of the intercalant stabilized in-between aluminosilicate layers upon intercalating, drying, and pillaring condition has been systematically studied by X-ray absorption spectroscopy, and compared to those of reference compounds such as ZrO2, and ZrOCl2 · 8H2O and its 1 N aqueous solution. The intercalated zirconium species was identified as the Zr-tetramer, [Zr4(OH)14(H2O)10]2+, with an average molecular volume of 10 × 10 Å2 and a thickness of 4.5 Å. Also it becomes more condensed upon drying and eventually transforms to a zirconium oxide pillar upon calcination. 相似文献