首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   3篇
综合类   1篇
化学工业   7篇
金属工艺   3篇
建筑科学   6篇
能源动力   2篇
轻工业   26篇
无线电   3篇
一般工业技术   34篇
冶金工业   26篇
原子能技术   1篇
自动化技术   18篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   10篇
  2012年   8篇
  2011年   14篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有127条查询结果,搜索用时 0 毫秒
121.
Sorbic acid (trans,trans-hexadienoic acid) was developed as a probe for the quantification of the formation rate, overall solution scavenging rate and steady-state concentrations of triplet-excited states of organic compounds. The method was validated against literature data for the quenching rate constant of triplet benzophenone by tyrosine obtained by laser flash photolysis and by Stern-Volmer plots of phosphorescence quenching. In contrast to these methods, the probe method does not require knowledge of the optical properties of triplets to monitor their quenching. Moreover, the probe method permits simultaneous quantification of triplet formation, quenching and steady-state concentrations during illumination of complex chromophore mixtures, such as natural organic matter (NOM), with polychromatic light >315 nm. Application of the method to de-aerated Suwannee River NOM illuminated with polychromatic light (315-430 nm) resulted in a triplet quantum yield of 0.062.  相似文献   
122.
The application of UV disinfection in water treatment is increasing due to both its effectiveness against protozoan pathogens, and the perception that its lack of chemical inputs would minimize disinfection byproduct formation. However, previous research has indicated that treatment of nitrate-containing drinking waters with polychromatic medium pressure (MP), but not monochromatic (254 nm) low pressure (LP), UV lamps followed by chlorination could promote chloropicrin formation. To better understand this phenomenon, conditions promoting the formation of the full suite of chlorinated halonitromethanes and haloacetonitriles were studied. MP UV/postchlorination of authentic filter effluent waters increased chloropicrin formation up to an order of magnitude above the 0.19 μg/L median level in the U.S. EPA's Information Collection Rule database, even at disinfection-level fluences (<300 mJ/cm(2)) and nitrate/nitrite concentrations (1.0 mg/L-N) relevant to drinking waters. Formation was up to 2.5 times higher for postchlorination than for postchloramination. Experiments indicated that the nitrating agent, NO(2)(?), generated during nitrate photolysis, was primarily responsible for halonitromethane promotion. LP UV treatment up to 1500 mJ/cm(2) did not enhance halonitromethane formation. Although MP UV/postchloramination enhanced dichloroacetonitrile formation with Sigma-Aldrich humic acid, formation was not significant in field waters. Prechlorination/MP UV nearly doubled chloropicrin formation compared to MP UV/postchlorination, but effects on haloacetonitrile formation were not significant.  相似文献   
123.
124.
125.
As pathogen contamination is a leading cause of surface water impairment, there has been increasing interest in the implications of seasonal disinfection practices of wastewater effluents for meeting water quality goals. For receiving waters designated for recreational use, disinfection during the winter months is often considered unnecessary due to reduced recreational usage, and assumptions that lower temperatures may reduce pathogen accumulation. For a river subject to seasonal disinfection, we sought to evaluate whether fecal coliforms accumulate during the winter to concentrations that would impair river water quality. Samples were collected from municipal wastewater outfalls along the river, as well as upstream and downstream of each outfall during the winter, when disinfection is not practiced, and during the summer, when disinfection is practiced. During both seasons, fecal coliform concentrations reached 2000–5000 CFU/100 mL, nearly an order of magnitude higher than levels targeted for the river to achieve primary contact recreational uses. During the summer, wastewater effluents were not significant contributors to fecal coliform loadings to the river. During the winter, fecal coliform accumulated along the river predominantly due to loadings from successive wastewater outfalls. In addition to the exceedance of fecal coliform criteria within the river, the accumulation of wastewater-derived fecal coliform along the river during the winter season suggests that wastewater outfalls may contribute elevated loads of pathogens to the commercial shellfish operations occurring at the mouth of the river. Reductions in fecal coliform concentrations between wastewater outfalls were attributed to dilution or overall removal. Combining discharge measurements from gauging stations, tributaries and wastewater outfalls to estimate seepage, dilution between wastewater outfalls was estimated, along with the percentage of the river deriving from wastewater outfalls. After accounting for dilution, the residual reductions in fecal coliform concentrations observed between outfalls were attributed to actual fecal coliform removal. The estimated rate of removal of 1.52 d?1 was significantly higher than die-off rates determined by previous researchers at similarly low temperatures in laboratory batch experiments, indicating the potential importance of other removal mechanisms, such as predation or sedimentation.  相似文献   
126.
The separation of methane (CH4) and nitrogen (N2) is a significant challenge to the enrichment and utilization of low concentration CH4 due to the similarity in the physical and chemical properties of the two molecules. In this work, we investigated the separation of CH4 from N2 using 100 kg of a new ionic liquidic zeolite (ILZ) material in a 6-bed pilot-scale pressure swing adsorption process. Feed gases with CH4 concentrations of 5.0% and 16.1% were upgraded to 11.5% and 34.6%, respectively, with CH4 recoveries higher than 80%. The pilot test results were used to anchor a numerical model that then allowed the efficient investigation of multiple operational parameters including desorption pressure and feed gas flow rates. The numerical model produced CH4 concentrations for both product streams consistent with those measured in the pilot experiments, with root mean square deviations below 2%. The modeling results revealed that sufficiently low desorption pressures can unexpectedly lead to lower heavy product purities under limited feed gas flow conditions. Furthermore, the optimum feed gas flow rate under which maximum heavy product purity is achieved increases with lower desorption pressure. The maximum CH4 concentrations increased from 31.8% to 41.5%, as desorption pressures decreased from 22.8 to 12.2 kPa for optimum feed flow rates between 78.2 and 105.5 mol/h. We also demonstrate a method of process optimization based on the bed capacity ratio, ℂ, which provides a scale-independent measure of the degree to which the column is being used effectively. By varying feed flow rate and/or desorption pressure, ℂ values between 0.2 and 0.8 were explored, with maxima in the combined separation performance metric (methane recovery) × (methane purity) occurring for values of ℂ in the range 0.29–0.36. This separation performance optimization by adjusting ℂ provides an effective strategy for integrating and understanding the impact of multiple operating parameters.  相似文献   
127.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry   总被引:2,自引:0,他引:2  
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号