首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
电工技术   6篇
化学工业   26篇
金属工艺   5篇
建筑科学   2篇
能源动力   9篇
轻工业   5篇
无线电   1篇
一般工业技术   8篇
冶金工业   5篇
自动化技术   7篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2016年   5篇
  2013年   3篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1987年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
41.
We have shown previously that random dots with an interocular time delay (ITD), the time difference of the onset of dots between the two eyes, yield both apparent depth and motion, although depth and velocity are covariant and, thus, ITD is inherently ambiguous. The depth of random dots with ITD was proportional to ITD, suggesting that the visual system assumes a constant velocity of the dots and determines depth on the basis of this constant velocity. We performed psychophysical experiments to investigate whether subjects perceive a constant velocity with a variety of ITDs in random dots aligned along a single vertical line that ensures neither apparent motion nor accidental disparity between the dots. The results showed that subjects perceive a constant velocity for a variety of ITDs with simultaneous perception of depth in proportion to ITD, indicating the priority of depth over velocity in ambiguous binocular perception derived from ITD.  相似文献   
42.
43.
Because rapid and uniform laser heating can fix the neck-drawing point in continuous drawing of PTT fiber, we have successfully analyzed the fiber structure development in the continuous drawing process by in-situ measurement with a time resolution of less than 1 ms. In this study, we investigated fiber structure development for PTT around the neck point controlled with a CO2 laser-heated apparatus during continuous drawing, through on-line measurements of WAXD, SAXS, and fiber temperature. Fiber temperature attained by laser radiation initiated a rise around −3 mm in relation to the neck point at 0 mm, and increased to about 90 °C, which is past the 45 °C Tg for PTT. The instantaneous increase in fiber temperature continued with a vertical ascent, with plastic deformation around the neck point. The crystalline diffraction pattern was revealed initially at the elapsed time of 0.415 ms immediately after necking, and remained fairly constant with elapsed time. The ultimate crystalline diffraction pattern for a completely drawn fiber showed little difference from that at the initial stage. In PET a two-dimensionally ordered structure in the form of a mesophase was detected immediately after the necking, whereas in PTT the phenomenon was not observed. With elapsed time, the d spacing of (002) plane decreased gradually due to transformation of the initial all-trans conformation into trans-gauche-gauche-trans conformation, and ultimately the PTT molecular chain could favorably adopt the trans-gauche-gauche-trans conformation. SAXS pattern immediately after the necking revealed an X-shape; the scattering intensity concentrated on meridian directions due to individual crystal development, and at 2 ms two-pointed scattering started to appear. Past 8 ms, the typical two-pointed scattering pattern was prominent and its intensity increased with elapsed time. Long period decreased with increasing elapsed time, but the crystallite size of meridian (002) plane hardly changed. The decrease in long period might be caused by chain relaxation in the amorphous region.  相似文献   
44.
Fe-substituted Li2MnO3 (Li1+x(FeyMn1−y)1−xO2, 0 ≤ x ≤ 1/3, 0.3 ≤ y ≤ 0.7) was synthesized using a combination of coprecipitation, hydrothermal, and heat-treatment methods. It exhibits high initial specific capacity greater than 200 mAh g−1 and small capacity, which fades up to the 50th cycle (>150 mAh g−1 at the 50th cycle) under electrochemical cycle testing at 60 °C. The attractive electrode properties appeared by controlling the chemical composition (x > 0.05, 0.3 ≤ y ≤ 0.5) and high specific surface area (>20 m2 g−1). The Fe-substituted Li2MnO3 is an attractive candidate as a novel 3 V-class positive electrode material.  相似文献   
45.
A partial-contact stress corrosion crack (SCC) is electrically modeled as a crack region with non-zero conductivity in eddy current testing (ECT). This partial-contact effect is excluded by an optimally designed crack-conductivity-insensitive depth characterization signal function (DCSF), and consequently the master curves obtained from electric-discharge machining (EDM) notches can be utilized directly in the depth sizing of SCCs. Furthermore, a crack conductivity independent artificial neural network (ANN) is constructed so that the entire depth profile can be reconstructed regardless of the crack conductivity. These two approaches are numerically validated and applied to the characterization of SCCs in SUS304 from measurement ECT signals. The average depth of each SCC is fast estimated from the DCSF, and the detailed depth profile is reconstructed from ANN. The ECT depth-sizing results show reasonable agreement with UT-TOFD measurement.  相似文献   
46.
Energetic efficiency is an important indicator of cardiac function in acute myocardial infarction. However, the relationship between cardiac energetic efficiency and infarct size is not perfectly elucidated. In this study, the relationship is analysed by means of simulation using a theoretical model of the guinea pig left ventricle. In simulation with varied ratios of infarct area, pressure–volume area (PVA), which is an index of total mechanical energy by ventricular contraction, and myocardial oxygen consumption (MVO2) are calculated for each infarct ratio. Then, change of PVA when MVO2 alters (PVA/MVO2) as a well‐known index of energy conversion efficiency is evaluated. In addition, PVA/VO2, which represents a ratio of PVA change to alteration of mean oxygen consumption of myocytes except for infarct myocytes, is introduced as an index for real energetic efficiency. In simulation results, PVA/MVO2 increases but PVA/VO2 decreases as infarct area expands, because with expansion of infarct area PVA decreases but VO2 remains almost unchanged because of larger shortening of myocytes. This implies that the enlargement of shortening of noninfarcted myocyte to compensate for depression of cardiac output is a potential cause of myocardial remodelling.Inspec keywords: blood vessels, cardiology, cellular biophysics, haemodynamics, muscle, oxygen, physiological modelsOther keywords: theoretical analysis, left ventricular energetic efficiency, acute infarct size, cardiac function, acute myocardial infarction, cardiac energetic efficiency, guinea pig left ventricle, pressure‐volume area, total mechanical energy, ventricular contraction, myocardial oxygen consumption, energy conversion efficiency, myocyte mean oxygen consumption, infarct myocytes, energetic efficiency index, noninfarcted myocyte shortening enlargement, cardiac output, myocardial remodellingInspec keywords: blood vessels, cardiology, cellular biophysics, haemodynamics, muscle, oxygen, physiological modelsOther keywords: theoretical analysis, left ventricular energetic efficiency, acute infarct size, cardiac function, acute myocardial infarction, cardiac energetic efficiency, guinea pig left ventricle, pressure‐volume area, total mechanical energy, ventricular contraction, myocardial oxygen consumption, energy conversion efficiency, myocyte mean oxygen consumption, infarct myocytes, energetic efficiency index, noninfarcted myocyte shortening enlargement, cardiac output, myocardial remodelling  相似文献   
47.
48.
49.
Highly stable carbon-supported hafnium oxynitride (HfOxNy-C) was synthesized by heating carbon-supported hafnium oxide, prepared using an impregnation method, under NH3 gas in various conditions. X-ray diffraction patterns, X-ray photoelectron spectra, and field-emission transmission electron microscope images confirmed that HfOxNy nanoparticles were dispersed onto commercial carbon black, Vulcan XC-72. The stability of HfOxNy-C in 0.1 mol dm−3 H2SO4 at 303 K was evaluated by measuring the mass ratio of dissolved hafnium to immersed HfOxNy-C using inductively coupled plasma atomic emission spectroscopy. It saturated at a low level of 0.8–4.0 mg g−1 with increasing immersion time up to ∼24 h. The oxygen reduction reaction (ORR) activity and rate were evaluated by obtaining cyclic voltammograms and rotating disk electrode voltammograms, respectively. The HfOxNy-C exhibited higher ORR activity and a lower Tafel slope than NH3-treated C under identical conditions, demonstrating that HfOxNy is active toward ORR. The ORR activity most depended on the heating temperature. The ORR rate increased with increasing the heating time at 1223 K which could be due to the increased y in HfOxNy-C. The maximum onset potential for ORR was 0.78 V vs. standard hydrogen electrode, which is 0.18 V lower than that of carbon-supported platinum.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号