首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   68篇
  国内免费   4篇
电工技术   18篇
综合类   3篇
化学工业   354篇
金属工艺   30篇
机械仪表   17篇
建筑科学   49篇
矿业工程   1篇
能源动力   110篇
轻工业   117篇
水利工程   22篇
石油天然气   13篇
无线电   113篇
一般工业技术   206篇
冶金工业   39篇
原子能技术   12篇
自动化技术   195篇
  2024年   6篇
  2023年   18篇
  2022年   58篇
  2021年   70篇
  2020年   60篇
  2019年   72篇
  2018年   70篇
  2017年   66篇
  2016年   68篇
  2015年   64篇
  2014年   82篇
  2013年   139篇
  2012年   86篇
  2011年   75篇
  2010年   80篇
  2009年   63篇
  2008年   31篇
  2007年   31篇
  2006年   19篇
  2005年   25篇
  2004年   15篇
  2003年   14篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1299条查询结果,搜索用时 15 毫秒
41.
42.
Three eco-friendly cationic surface active agents were synthesized from the chemical modification of vanillin. The chemical structures of these surfactants were confirmed using elemental analysis, IR and NMR spectra. The surface activity measurements showed their high tendency towards adsorption and micellization and their good surface tension reduction, low interfacial tension. The emulsion stability measurements showed acceptable efficiency as emulsifying agents for short term emulsions. The biodegradability tests revealed that these compounds are eco-friendly and had completely degraded in 30 days.  相似文献   
43.
Poly(butylene succinate) (PBS) filled kenaf bast fiber (KBF) composites were fabricated via compression molding. The effects of KBF loading on the flexural and impact properties of the composites were investigated for fiber loadings of 10–40 wt %. The optimum flexural strength of the composites was achieved at 30 wt % fiber loading. However, the flexural modulus of the composites kept increasing with increasing fiber loading. Increasing the fiber loading led to a drop in the impact strength of about 57.5–73.6%; this was due to the stiff nature of the KBF. The effect of the fiber length (5, 10, 15, and 20 mm) on the flexural and impact properties was investigated for the 30 wt % KBF loaded composites. The composites with 10‐mm KBF showed the highest flexural and impact properties in comparison to the others. The inferior flexural and impact strength of the composites with 15‐ and 20‐mm KBF could be attributed to the relatively longer fibers that underwent fiber attrition during compounding, which consequently led to the deterioration of the fiber. This was proven by analyses of the fiber length, diameter, and aspect ratio. The addition of maleated PBS as a compatibilizer resulted in the enhancement of the composite's flexural and impact properties due to the formation of better fiber–matrix interfacial adhesion. This was proven by scanning electron microscopy observations of the composites' fracture surfaces. The removal of unreacted maleic anhydride and dicumyl peroxide residuals from the compatibilizers led to better fiber–matrix interfacial adhesion and a slightly enhanced composite strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
44.
β-Conglycinin is a trimeric protein consisting of three subunits, α,α′,and β, which are N-glycosylated. The α and α′ subunits contain extension regions in addition to core regions common to all subunits. We purified homogeneous trimers consisting of only α, α′, or β from mutant soybean cultivars containing β-conglycinin lacking one or two subunits: α homotrimers from an α′-lacking mutant, α′ homotrimers from an α-lacking mutant, and β homotrimers from an α-and α′-lacking mutant. Structural features and physicochemical functions of the three homotrimers were examined and compared with those of recombinant homotrimers having no N-linked glycans. The native homotrimers have secondary structures very similar to those of the recombinant ones. In analogy with the recombinant homotrimers, the native ones exhibit different thermal stabilities from one another (β>α′>α), and the native α and α′ homotrimers exhibit better solubility, emulsifying ability, and heat-induced association than the native β homotrimer. Further, the N-linked glycans contribute to solubilities of the three subunits at low ionic strength (μ=0.08) and to the emulsifying ability of the native β homotrimer. N-Linked glycans also prevent heat-induced associations of the native α and α′ homotrimers but do not contribute to the secondary structure and the thermal stability of β-conglycinin.  相似文献   
45.
Enrichment of the omega-3 (n-3) fatty acids of refined hoki oil (RHO) intact triglycerides (TG) and via free fatty acids (FFA), was carried out in the present study using established methods of dry fractionation (DF), low temperature solvent crystallization (LTSC) and urea complexation (UC) and positional distribution of fatty acids in the intact TG was determined by Nuclear Magnetic Resonance (NMR) analysis. Results showed that n-3 fatty acids were enriched in liquid fractions of all methods except DF, where the highest concentration was obtained via the UC method (83.00 %). The FFA form of the oil produced a higher concentration (40.81 %) of n-3 fatty acids via the LTSC method compared to the TG form (31.50 %). The percentages of the total saturated fatty acid (SFA) in the liquid fractions in all methods were lower, ranging from 1.60 % (UC) to 21.44 % (DF) compared to the RHO parent oil (24.05 %). The percentages of total monounsaturated fatty acids (MUFA) in the liquid fractions were similar to the solid fractions except for the UC method where total MUFA was six times higher in the solid fraction. In LTSC-FFA and UC methods, the enrichment factor for EPA was lower, ranging from 1.61 (LTSC-FFA) to 2.83 (UC), than DHA which ranged from 1.64 (LTSC-FFA) to 3.88 (UC). EPA was preferentially located at the sn-1,3 position and DHA was significantly located at the sn-2 position which is the favoured location for intestinal digestion.  相似文献   
46.
Effects of various concentrations (0–5 ppm) of anionic (sodium dodecyl sulfate, SDS) and non‐ionic (Tween‐80 and Triton X‐405) surfactants on gas hold‐up and gas–liquid mass transfer in a split‐cylinder airlift reactor are reported for air–water. Surfactants were found to strongly enhance gas hold‐up. Non‐ionic surfactants were more effective in enhancing gas hold‐up compared to the anionic surfactant SDS. An enhanced gas hold‐up and a visually reduced bubble size in the presence of surfactants implied an enhanced gas–liquid interfacial area for mass transfer. Nevertheless, the overall gas–liquid volumetric mass transfer coefficient was reduced in the presence of surfactants, suggesting that surfactants greatly reduced the true liquid film mass transfer coefficient and this reduction outweighed the interfacial area enhancing effect. Presence of surfactants did not substantially affect the induced liquid circulation rate in the airlift vessel.  相似文献   
47.
Quantum chemical calculations were performed on ten thio compounds using semi-empirical method PM3 within program package of Material Studio 5.5. The effect of molecular structure on the corrosion inhibition efficiency was investigated using the quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, (LUMO–HOMO) energy gap, dipole moment (λ) and fraction of electron transfer (ΔN) were calculated and discussed. A relationship between the corrosion inhibition efficiency and several quantum parameters was established with coefficient correlation (R2) of 0.8894.  相似文献   
48.
The influence of molecularly imprinted polymer‐methacrylic acid functionalized β‐cyclodextrin (MIP(MAA‐β‐CD)) morphology on the adsorption behavior studies towards benzylparaben (BzP) was explored. The effects of time, concentration, and temperature towards BzP uptake were extensively evaluated. The adsorption performance of MIP(MAA‐β‐CD) was compared with that on the molecularly imprinted polymer‐methacrylic acid (MIP(MAA)) synthesized without β‐CD. The MIP(MAA‐β‐CD) was synthesized to obtain a spherical and spongy‐porous texture with a broad pore size distribution. The MIP(MAA‐β‐CD) showed fast kinetic and the intra‐particle diffusion model demonstrated a three step (surface and pore) adsorption process. The Koble‐Corrigan isotherm was the most suitable model for data fitting, which indicated that MIP(MAA‐β‐CD) had homogeneous and heterogeneous surfaces. This finding clearly demonstrated that the large uptake and strong affinity of MIP(MAA‐β‐CD) did not only probably result from the monomer‐template interactions, but also due to the morphological MIP(MAA‐β‐CD) structure. In contrary to MIP(MAA‐β‐CD), MIP(MAA) synthesized with uniform morphology and narrow pore size distribution had lower adsorption capacities and its kinetic data fitted the pseudo‐second order diffusion model, indicating a two‐step (surface only) adsorption process. The MIP(MAA) adsorption process followed the Langmuir isotherm model referred to solely homogeneous uptake. The calculated thermodynamic parameters showed that the BzP uptake was exothermic, spontaneous, and physisorption process onto MIPs, which supported the results of kinetics and isotherm adsorption data. This study clearly revealed that the presence of β‐CD improved the morphology of synthesized MIP, and automatically enhanced the adsorption behavior of MIP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42720.  相似文献   
49.
The effects produced by annealing Y2O3 nanopowders on their spark plasma sintering (SPS) behavior are systematically investigated in this work. It is found that the annealed powders display higher sinterability with respect to the as‐received ones. Indeed, the maximum densification level reached from pristine powders is about 97.5%, whereas density decreases when further increasing either the sintering temperature or the dwell time. In contrast, the density of SPS products obtained from pretreated powder monotonically increases with temperature and processing time, thus leading to fully dense materials in 30 min at 1050°C and 60 MPa. Correspondingly, it is found that the annealing treatment markedly inhibits grain coarsening during SPS. Thus, dense translucent samples with grain size below 100 nm can be attained from annealed powders. On the other hand, white‐opaque specimens with significantly coarser microstructures (up to 1‐μm‐sized grains) are obtained when pristine powders are directly processed under the same sintering conditions. Furthermore, it is observed that the annealing treatment of SPS samples in air allows for graphite contamination removal, whereas no improvement in term of light transmittance is produced.  相似文献   
50.
An environmental friendly regenerated cellulose membrane (RCM) was successfully prepared via NaOH/urea aqueous solution system by utilizing recycled newspaper (RNP) as the cellulose source. The morphological and chemical structure of resulting membrane were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD) spectroscopy, and thermogravimetric analysis (TGA). Results from FTIR and XRD verified that the transparent RCM possesses cellulose II structure. SEM observation revealed that the transparent RCM consist of homogeneous dense symmetric membrane structure and composed of a skin layer with mean roughness parameter Ra, obtained from AFM analysis of 29.53 nm. Pure water flux, water content, water contact angle, porosity, and pore size of the resulting membrane were also measured. This study promotes the potential of the cellulose‐based membrane obtained from low cost cellulose source for application in filtration and separation system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42684.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号