首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7995篇
  免费   486篇
  国内免费   61篇
电工技术   112篇
综合类   23篇
化学工业   2031篇
金属工艺   210篇
机械仪表   258篇
建筑科学   185篇
矿业工程   29篇
能源动力   483篇
轻工业   770篇
水利工程   83篇
石油天然气   54篇
无线电   828篇
一般工业技术   1659篇
冶金工业   606篇
原子能技术   73篇
自动化技术   1138篇
  2024年   30篇
  2023年   165篇
  2022年   416篇
  2021年   608篇
  2020年   373篇
  2019年   408篇
  2018年   457篇
  2017年   409篇
  2016年   424篇
  2015年   284篇
  2014年   363篇
  2013年   696篇
  2012年   463篇
  2011年   485篇
  2010年   306篇
  2009年   264篇
  2008年   230篇
  2007年   197篇
  2006年   164篇
  2005年   126篇
  2004年   93篇
  2003年   102篇
  2002年   83篇
  2001年   76篇
  2000年   63篇
  1999年   77篇
  1998年   178篇
  1997年   137篇
  1996年   114篇
  1995年   89篇
  1994年   81篇
  1993年   64篇
  1992年   45篇
  1991年   45篇
  1990年   42篇
  1989年   38篇
  1988年   28篇
  1987年   30篇
  1986年   35篇
  1985年   34篇
  1984年   28篇
  1983年   30篇
  1982年   14篇
  1981年   13篇
  1980年   12篇
  1978年   19篇
  1977年   17篇
  1976年   23篇
  1973年   8篇
  1972年   8篇
排序方式: 共有8542条查询结果,搜索用时 15 毫秒
191.
Ball end magnetorheological finishing is a unique process that utilizes a magnetically controlled ball of polishing fluid at the tip of the rotating tool to finish workpiece of different materials and shapes. The aim of this research is to study the effect of polishing fluid volume on finishing spot size and the surface finish associated with it. A magnetostatic simulation is done to find the variation of flux density in the working gap and on the workpiece surface. The maximum limit of the polishing fluid volume is selected on the basis of area of threshold magnetic flux density (minimum value required for finishing) region on the workpiece surface. The surface characteristics and the diameter of the finished spot are analyzed by varying the fluid volume. The surface obtained with high fluid volume is poorly finished and has scratch marks as the excess fluid flows out from the working gap and forms a thick ring at the periphery of the tool tip. Contrary to this, if the fluid volume is too less, then it merely rotates over the workpiece surface without causing any finishing action. An optimum range of fluid volume produces a good quality surface finish with constant finished spot size.  相似文献   
192.
The piezoelectric effect, discovered in 1880 by Jacques and Pierre Curie, effectively allows to transduce signals from the mechanical domain to the electrical domain and vice versa. For this reason, piezoelectric devices are already ubiquitous, including, for instance, quartz oscillators, mechanical actuators with sub-atomic resolution and microbalances. However, the ability to synthesize two-dimensional (2D) materials may enable the fabrication of innovative devices with unprecedented performance. For instance, many materials which are not piezoelectric in their bulk form become piezoelectric when reduced to a single atomic layer; moreover, since all the atoms belong to the surface, piezoelectricity can be effectively engineered by proper surface modifications. As additional advantages, 2D materials are strong, flexible, easy to be co-integrated with conventional integrated circuits or micro-electromechanical systems and, in comparison with bulk or quasi-1D materials, easier to be simulated at the atomistic level. Here, we review the state of the art on 2D piezoelectricity, with reference to both computational predictions and experimental characterization. Because of their unique advantages, we believe 2D piezoelectric materials will substantially expand the applications of piezoelectricity.  相似文献   
193.
Nature instigates researchers significantly in imitating to engender comparable properties using artificial methods, which unlocks developing trend in material science and engineering progress. Fabricating graded‐index nanostructures is an effective approach to tune and generate similar properties artificially such as the moth's eye antireflectance (AR) or lotus like superhydrophobicity. Herein, Bilayer AR coatings with periodically arranged SiO2 hierarchical nanostructures resembling moth eyes are fabricated on dense SiO2 matrix base layer using the versatile route of glancing angle deposition technique (GLAD). The refractive indices of monolayer SiO2 are tuned from 1.46 to 1.08 by changing the deposition angle (α) from 0 to 88°. The fabricated bilayer SiO2 AR (BSAR) film possess high optical omnidirectional broadband transparency and tunability at a desired wavelength range showing <1% reflectance. The present AR design is flexible and practically applicable to various supporting substrate materials (η varies from 1.45 to 1.9). Furthermore, the omnidirectional BSAR films show multiple functions including enhanced mechanical strength, the thermal stability (up to 300 °C), and hydrophobic capability with a water contact angle (CA) of 147° to withstand under humid environment. This multipurpose coating provides an intriguing route in optics field for imminent research.
  相似文献   
194.
This work reports the template‐free fabrication of mesoporous Al2O3 nanospheres with greatly enhanced textural characteristics through a newly developed post‐synthesis “water‐ethanol” treatment of aluminium glycerate nanospheres followed by high temperature calcination. The proposed “water‐ethanol” treatment is highly advantageous as the resulting mesoporous Al2O3 nanospheres exhibit 2–4 times higher surface area (up to 251 m2 g?1), narrower pore size distribution, and significantly lower crystallization temperature than those obtained without any post‐synthesis treatment. To demonstrate the generality of the proposed strategy, a nearly identical post‐synthesis “water treatment” method is successfully used to prepare mesoporous monometallic (e.g., manganese oxide (MnO2)) and bimetallic oxide (e.g., CuCo2O4 and MnCo2O4) nanospheres assembled of nanosheets or nanoplates with highly enhanced textural characteristics from the corresponding monometallic and bimetallic glycerate nanospheres, respectively. When evaluated as molybdenum (Mo) adsorbents for potential use in molybdenum‐99/technetium‐99m (99Mo/99mTc) generators, the treated mesoporous Al2O3 nanospheres display higher molybdenum adsorption performance than non‐treated Al2O3 nanospheres and commercial Al2O3, thereby suggesting the effectiveness of the proposed strategy for improving the functional performance of oxide materials. It is expected that the proposed method can be utilized to prepare other mesoporous metal oxides with enhanced textural characteristics and functional performance.  相似文献   
195.
Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)‐based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity. Here, the highly conductive and elastic sponge composed of GO, flower‐shaped silver nanoparticles (AgNFs), and polyimide (GO‐AgNF‐PI sponge) are demonstrated. The average pore size and porosity are 114 µm and 94.7%, respectively. Ag NFs have thin petals (8–20 nm) protruding out of the surface of a spherical bud (300–350 nm) significantly enhancing the specific surface area (2.83 m2 g?1). The electrical conductivity (0.306 S m?1 at 0% strain) of the GO‐AgNF‐PI sponge is increased by more than an order of magnitude with the addition of Ag NFs. A nearly perfect elasticity is obtained over a wide compressive strain range (0–90%). The strain‐dependent, nonlinear variation of Young's modulus of the sponge provides a unique opportunity as a variable stiffness stress sensor that operates over a wide stress range (0–10 kPa) with a high maximum sensitivity (0.572 kPa?1). It allows grasping of a soft rose and a hard bottle, with the minimal object deformation, when attached on the finger of a robot gripper.  相似文献   
196.
In this study, an eco‐friendly biosynthesis of stable gold nanoparticles (T‐GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T‐GNPs was monitored by UV‐visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T‐GNPs was found to be 10.86 ± 0.6 nm. T‐GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T‐GNPs were further investigated for their anti‐cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T‐GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T‐GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T‐GNPs) against critical diseases like lung cancer and cervical cancer.Inspec keywords: gold, nanoparticles, particle size, cancer, ultraviolet spectra, visible spectra, electrokinetic effects, transmission electron microscopy, Fourier transform infrared spectra, cellular biophysics, spectrochemical analysis, nanomedicine, nanofabricationOther keywords: tomato‐mediated synthesised gold nanoparticles, tomato juice, reducing agent, tetrachloroauric acid, cancer therapeutics, UV‐visible absorption spectroscopy, surface plasmon absorption, dynamic light scattering, zeta potential, transmission electron microscopy analysis, Fourier transform infrared spectroscopy, human lung carcinoma cell line, anticancer activity, human cervical cancer cell line, nutratherapeutic agent, lung cancer, Au  相似文献   
197.
Accurate location or positioning of people and self-driven devices in large indoor environments has become an important necessity The application of increasingly automated self-operating moving transportation units, in large indoor spaces demands a precise knowledge of their positions. Technologies like WiFi and Bluetooth, despite their low-cost and availability, are sensitive to signal noise and fading effects. For these reasons, a hybrid approach, which uses two different signal sources, has proven to be more resilient and accurate for the positioning determination in indoor environments. Hence, this paper proposes an improved hybrid technique to implement a fingerprinting based indoor positioning, using Received Signal Strength information from available Wireless Local Area Network access points, together with the Wireless Sensor Networks technology. Six signals were recorded on a regular grid of anchor points, covering the research space. An optimization was performed by relative signal weighting, to minimize the average positioning error over the research space. The optimization process was conducted using a standard Quantum Particle Swarm Optimization, while the position error estimate for all given sets of weighted signals was performed using a Multilayer Perceptron (MLP) neural network. Compared to our previous research works, the MLP architecture was improved to three hidden layers and its learning parameters were finely tuned. These experimental results led to the 20% reduction of the positioning error when a suitable set of signal weights was calculated in the optimization process. Our final achieved value of 0.725 m of the location incertitude shows a sensible improvement compared to our previous results.  相似文献   
198.
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   
199.
Despite the planned installation and operations of the traditional IEEE 802.11 networks, they still experience degraded performance due to the number of inefficiencies. One of the main reasons is the received signal strength indicator (RSSI) association problem, in which the user remains connected to the access point (AP) unless the RSSI becomes too weak. In this paper, we propose a multi-criterion association (WiMA) scheme based on software defined networking (SDN) in Wi-Fi networks. An association solution based on multi-criterion such as AP load, RSSI, and channel occupancy is proposed to satisfy the quality of service (QoS). SDN having an overall view of the network takes the association and reassociation decisions making the handoffs smooth in throughput performance. To implement WiMA extensive simulations runs are carried out on Mininet-NS3-Wi-Fi network simulator. The performance evaluation shows that the WiMA significantly reduces the average number of retransmissions by 5%–30% and enhances the throughput by 20%–50%, hence maintaining user fairness and accommodating more wireless devices and traffic load in the network, when compared to traditional client-driven (CD) approach and state of the art Wi-Balance approach.  相似文献   
200.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号