首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2384篇
  免费   126篇
  国内免费   14篇
电工技术   34篇
综合类   9篇
化学工业   758篇
金属工艺   51篇
机械仪表   87篇
建筑科学   58篇
能源动力   173篇
轻工业   330篇
水利工程   26篇
石油天然气   12篇
武器工业   1篇
无线电   216篇
一般工业技术   385篇
冶金工业   47篇
原子能技术   10篇
自动化技术   327篇
  2024年   8篇
  2023年   50篇
  2022年   122篇
  2021年   174篇
  2020年   122篇
  2019年   139篇
  2018年   156篇
  2017年   137篇
  2016年   169篇
  2015年   106篇
  2014年   157篇
  2013年   259篇
  2012年   213篇
  2011年   183篇
  2010年   109篇
  2009年   80篇
  2008年   45篇
  2007年   41篇
  2006年   35篇
  2005年   30篇
  2004年   20篇
  2003年   24篇
  2002年   17篇
  2001年   20篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   4篇
  1996年   10篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有2524条查询结果,搜索用时 0 毫秒
91.
The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0–5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.  相似文献   
92.
Plasticized poly(lactic acid) (PLA)‐based nanocomposites filled with graphene nanoplatelets (xGnP) and containing poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) with ratio 2 : 1 (2P : 1E) as hybrid plasticizer were prepared by melt blending method. The key objective is to take advantage of plasticization to increase the material ductility while preserving valuable stiffness, strength, and toughness via addition of xGnP. The tensile modulus of PLA/2P : 1E/0.1 wt % xGnP was substantially improved (30%) with strength and elasticity maintained, as compared to plasticized PLA. TGA analysis revealed that the xGnP was capable of acting as barrier to reduce thermal diffusion across the plasticized PLA matrix, and thus enhanced thermal stability of the plasticized PLA. Incorporation of xGnP also enhanced antimicrobial activity of nanocomposites toward Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41652.  相似文献   
93.
A biantennary surfactant based on a synthetic C16‐maltoside was chosen to prepare vesicles for a potential vesicular drug delivery system. The synthesis comprised of three stages: Initial synthesis of β‐d ‐maltose octaacetate was followed by glycosidation of 2‐hexyl‐decanol and final glycolipid deacetylation. Both α‐ and β‐anomers were prepared and their anomeric purity was evaluated by 1H NMR. Owing to the low water solubility of the glycolipid, addition of ionic co‐surfactants was believed to promote the surfactant distribution, thus leading to smaller and more uniform vesicles. The assembly behavior of the surfactant systems was studied by contact penetration under an optical polarizing microscope, while interfacial properties were determined by surface tension measurements. Vesicles were prepared by injection of an ethanolic solution into bulk water and investigated by dynamic light scattering and field emission scanning electron microscopy. Contact of the surfactant mixtures with water indicated a high tendency to exhibit the lamellar phase and confirmed the expected low molecular solubility. These findings suggest a potential of the surfactant to form stable vesicles. Injection of an ethanolic surfactant solution into bulk water gave sub‐micrometer sized vesicles with a narrow size distribution. Application of ionic co‐surfactants reduced the vesicle size. In particular ~20 % of anionic SDS proved highly effective, lowering the vesicle size by nearly one decade, thus accessing nano‐sized vesicles. Encapsulation of a water‐soluble drug was achieved in a 76 ± 10 % efficiency.  相似文献   
94.
95.
An organic–inorganic nanohybrid nanocomposite was synthesized by co-precipitation method using beta-naphthoxyacetate (BNOA) as guest anion and zinc–aluminium layered double hydroxide (Zn–Al-LDH) as the inorganic host. A well-ordered nanohybrid nanocomposite was formed when the concentration of BNOA was 0.08 M and the molar ratio of Zn to Al, R = 2. Basal spacing of layered double hydroxide containing nitrate ions expanded from 8.9 to 19.5 Å in resulting of Zn–Al-BNOA nanocomposite was obtained indicates that beta-naphthoxyacetate was successfully intercalated into interlayer spaces of layered double hydroxide. It was also found out the BET surface area increased from 1.13 to 42.79 m2 g?1 for Zn–Al-LDH and Zn–Al-BNOA nanocomposite, respectively. The BJH average pore diameter of the synthesized nanocomposite is 199 Å which shows mesoporous-type of material. CHNS analysis shows the Zn–Al-BNOA nanocomposite material contains 36.2 % (w/w) of BNOA calculated based on the percentage of carbon in the sample. Release of BNOA from the lamella of Zn–Al-BNOA was controlled by the zeroth and first order kinetics at the beginning of the deintercalation process up to 200 min and controlled by pseudo-second order kinetics for the whole process. This study suggests that layered double hydroxide can be used as a carrier for organic acid herbicide controlled release formulation of BNOA.  相似文献   
96.
The removal of PSa? from bulk aqueous phase to the pseudo‐micellar phase by halobenzoate counterion X is responsible for the monotonic increase in kobs (pseudo first‐order rate constants) with the increase in the values of [MX] where MX = sodium salts of 2‐, and 4‐halobenzoic acids. The values of ion exchange constants, or for X = 2‐ and 4‐halobenzoate ions in the presence of tetradecyltrimethylammonium bromide (TTABr) were calculated from the apparent catalytic rate constants, Xkcat which represent the catalytic effect of CFN. Larger values of or were observed for X = 4‐halobenzoate ions than that for X = 2‐halobenzoate ions due to isomeric factors. The values of or determined in the presence of TTABr were compared with previously determined or values in the presence of cetyltrimethylammonium bromide (CTABr). The values of or are nearly 8 ~ 9‐fold larger for 4‐IBz?, 4‐BrBz? and 4‐ClBz? compared to the respective values of X = 2‐IBz?, 2‐BrBz? and 2‐ClBz?. The values of or for X = 4‐FBz? is nearly 3‐fold larger than that for X = 2‐FBz?. The values of or for X = 2‐ and 4‐halobenzoates are significantly smaller in the presence of TTABr than these in the presence of CTABr nanoparticles.  相似文献   
97.
98.
The present study focused on the preparation of nanohydroxyapatite (nHA)-coated hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibrous scaffolds for bone tissue engineering application. The electrospun HEC/PVA scaffolds were mineralized via alternate soaking process. FESEM revealed that the nHA was formed uniformly over the nanofibers. The nHA mineralization enhanced the tensile strength and reduced the elongation at breakage of scaffolds. The wettability of the nanofibrous scaffolds was significantly improved. The in vitro biocompatibility of scaffolds was evaluated with human osteosarcoma cells. nHA-coated scaffolds had a favorable effect on the proliferation and differentiation of osteosarcoma cell and could be a potential candidate for bone regeneration.  相似文献   
99.
Mesoporous-activated carbon was prepared from fallen coconut (Cocos nucifera) leaf, an agricultural waste through a microwave-induced H3PO4 activation process. The characterization of the coconut leaf–activated carbon (CAC) was evaluated through the iodine number, ash content, bulk density, and moisture content. Fourier transform infrared spectroscopy, scanning electron microscope, Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction, and pHPZC. CAC has a mesopore content of 84% with an average pore size of 36.5?Å and a large BET surface area of 632?m2/g. The uptake properties of the CAC with methylene blue was evaluated at different CAC dosage levels (0.2–10?g/L), initial pH (3–10), methylene blue concentration (50–350?mg/L), and time (0–360?min) using batch mode operation. The kinetic profiles were described by the pseudo-second-order kinetics. The equilibrium data were well fitted to the Langmuir model with a maximum monolayer adsorption capacity of 250?mg/g at 30°C. Thermodynamic functions indicate a spontaneous and exothermic nature of the adsorption process. This study indicates that coconut leaves are a promising renewable precursor that can be utilized to develop an efficient mesoporous-activated carbon.  相似文献   
100.
The aim of this study was to investigate the performance of UHMWPE/HDPE-reinforced kenaf, basalt and hybrid kenaf/basalt composites. Mechanical testing of these samples was carried out such as tensile, flexural (three-point bending) and an impact test (Charpy). Pure resin (UHMWPE/HDPE) samples were tested and compare with reinforced 10% weight fraction of kenaf, basalt and hybrid kenaf/basalt samples to identifying their contribution and potential in this new composite material. UHMWPE/ HDPE sample was produced in constant ratio 60:40 respectively via extrusion process. Basalt reinforced UHMWPE/HDPE generates the highest elastic modulus result compared to kenaf and hybrid kenaf/basalt as a reinforcement material. The tensile results of kenaf reinforcement UHMWPE/HDPE samples are significantly higher (20%) than pure blend resin, which is an indication for good performance of kenaf, basalt and hybrid kenaf/basalt to be used in UHMWPE/HDPE-blend polymers. The flexural and Charpy strengths show the drawback results, where performance of polymer is reduced 5% with the absence of kenaf. It can be concluded that kenaf, basalt and hybrid kenaf/basalt fiber successfully increase the UHMWPE/HDPE blends performance especially under tensile loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号