首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1091篇
  免费   16篇
  国内免费   6篇
电工技术   26篇
综合类   4篇
化学工业   291篇
金属工艺   19篇
机械仪表   36篇
建筑科学   38篇
矿业工程   3篇
能源动力   67篇
轻工业   83篇
水利工程   41篇
石油天然气   17篇
无线电   89篇
一般工业技术   169篇
冶金工业   46篇
原子能技术   11篇
自动化技术   173篇
  2024年   19篇
  2023年   16篇
  2022年   31篇
  2021年   65篇
  2020年   70篇
  2019年   80篇
  2018年   99篇
  2017年   92篇
  2016年   81篇
  2015年   42篇
  2014年   54篇
  2013年   97篇
  2012年   62篇
  2011年   84篇
  2010年   57篇
  2009年   32篇
  2008年   18篇
  2007年   19篇
  2006年   17篇
  2005年   19篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有1113条查询结果,搜索用时 0 毫秒
101.
A novel methodology for the order‐reduction of parabolic partial differential equation (PDE) systems with time‐varying domain is explored. In this method, a mapping functional is obtained, which relates the time‐evolution of the solution of a parabolic PDE with time‐varying domain to a fixed reference domain, while preserving space invariant properties of the initial solution ensemble. Subsequently, the Karhunen–Loève decomposition is applied to the solution ensemble on fixed spatial domain resulting in a set of optimal eigenfunctions. Further, the low dimensional set of empirical eigenfunctions is mapped on the original time‐varying domain by an appropriate mapping, resulting in the basis for the construction of the reduced‐order model of the parabolic PDE system with time‐varying domain. This methodology is used in three representative cases, one‐ and two‐dimensional (1‐D and 2‐D) models of nonlinear reaction‐diffusion systems with analytically defined domain evolutions, and the 2‐D model of the Czochralski crystal growth process with nontrivial geometry. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4142–4150, 2013  相似文献   
102.
Uptake to cuprous oxide (Cu2O) nanoparticle synthesis with various particle sizes and shapes via supersaturation chemistry approach (LaMer model) has been conducted. Ascorbic acid and maltodextrine as reducing agents and polyvinylpyrrolidone (PVP) as a surfactant were utilized for synthesis of Cu2O nanoparticles in aqueous solution. The narrow particle size range was achieved by controlling the kinetics of nucleation and growth of particles to satisfy LaMer theory. This mean was performed utilizing different reducing agents (ascorbic acid and maltodextrin) and also, changing the reducing agent addition condition. The results showed the reducing agent addition condition, varying the size of Cu2O nanoparticles from 89 nm to 74 nm for drop-wisely and at-once routes, respectively. The samples were characterized by XRD, SEM, and UV-Vis spectroscopy. The results indicate the shape of as-prepared cuprous oxide nanoparticles have close relationship with thermodynamic and kinetic conditions, and also reducing addition condition.  相似文献   
103.
This paper presents a resistance-based hydrogen gas sensor using polyaniline (emeraldine)/TiO2 nanocomposite (PT–NC) thin film. It is demonstrated that different gas sensing features can arise when various TiO2 phases (anatase and rutile) are applied. The different wt% of TiO2 phases were dispersed into an acidic solution of aniline monomers and PT–NCs were synthesized by an in-situ self-assembly chemical oxidative polymerization method of aniline. PT–NCs deposited on an epoxy glass substrate having Cu-interdigited electrodes for hydrogen gas sensing at air pressure and room temperature. Our results show that the better sensitivity of the sensor strongly depends on the sensor surface morphology and its components. Furthermore, hydrogen gas sensing mechanism of the sensor based contact areas between Pani chains and TiO2 grains was studied.  相似文献   
104.
A sizing formulation, containing compatible and incompatible silane coupling agents with epoxy resin in conjunction with nanoscale colloidal silica, was used to modify the surface of glass fabric. The modified glass fabric/epoxy resin composite panels were fabricated and characterised by flexural test, Charpy impact test and scanning electron microscope (SEM). By combining nano silica with silane blend in the fabric sizing, more energy was consumed under bending and impacting, which resulted in an improvement of the toughness in composites. The flexural strength, bending stain and Charpy impact strength of the epoxy composite/glass fabric treated with 1?wt-% nano silica and silane blend were ~42, ~22 and 35%, respectively, higher than those of silane blend coated glass fabric-reinforced composites (without nano silica). Furthermore, the change of the brittle fracture of the composite into ductile fracture was investigated by SEM micrographs. A possible toughening mechanism was also proposed.  相似文献   
105.
Electrocatalytic oxidation of methanol and some other primary alcohols on a glassy carbon electrode modified with multi-walled carbon nanotubes and nano-sized nickel oxide (GCE/MWNT/NiO) was investigated by cyclic voltammetry and chronoamperometry in alkaline medium. The results were compared with those obtained on a nickel oxide-modified glassy carbon electrode (GCE/NiO). Both the electrodes were conditioned by potential cycling in the range of 0.1–0.6 V versus Ag/AgCl in a 0.10 M NaOH solution. The effects of various parameters such as scan rate, alcohol concentration, thickness of NiO film, and real surface area of the modified electrodes were also investigated and compared. It was found that the GCE/MWNT/NiO-modified electrode possesses an improved electrochemical behavior over the GC/NiO-modified electrode for methanol oxidation.  相似文献   
106.
Three-way data obtained from different pulse heights of differential pulse voltammetry (DPV) was analyzed using multivariate curve resolution by alternating least squares (MCR-ALS) algorithm. Differential pulse voltammograms of tryptophan were recorded at a gold nanoparticles decorated multiwalled carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-nanoAu). The determination of tryptophan was performed even in the presence of unexpected electroactive interference(s). Both the simulated and experimental data were non-bilinear. Therefore a potential shift algorithm was used to correct the observed shift in the data. After correction, the data was augmented and MCR-ALS was applied to the augmented data. A relative error of prediction of less than 8% for the determination of the simulated analyte of interest and tryptophan in synthetic samples indicated that the methodology employing voltammetry and second-order calibration could be applied to complex analytical systems.  相似文献   
107.
The present work deals with application of 25-2 fractional factorial design (FFD) to evaluate the operating parameters on starch separation from synthetic starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame handmade membrane module. The analysis of variance (ANOVA) combined with F-test was also used to recognize non-significant terms. The performance of the filtration process was evaluated by calculating the COD removal percentage (rejection factor) and permeate flux. In this experiment, five input parameters were surveyed, including trans membrane pressure (TMP), flow and temperature of feed, pH and concentration of wastewater. In this experiment, real wastewater was not used but synthetic starchy wastewater was prepared using starch. Two models were obtained from experimental data, capable of predicting COD removal percentage and permeate flux in different conditions. The predicted values obtained from the regression models were close to the actual ones. For the reduction of fouling, cleaning in place (CIP) method was used.  相似文献   
108.
A new nano-sized Zn(II) complex, [Zn(5,5′-dtbu-2,2′-bipy)Cl2] n (1) was synthesized and its structure determined by X-ray crystallography. The new nano-sized complex was prepared at oleic acid as a surfactant at 280 °C and characterized by scanning electron microscopy, elemental analyses and IR spectroscopy. The ZnO nano-particles were synthesized from thermolysis of nano-compound 1 at 600 °C and similar compound, [Zn(5,5′-dimethyl-2,2′-bipy)Cl2] n (2), at two different methods. SEM images show the average size of ZnO nano-particles are 78 and 50 nm for the compounds 1 and 2, respectively.  相似文献   
109.
Observer and optimal boundary control design for the objective of output tracking of a linear distributed parameter system given by a two‐dimensional (2‐D) parabolic partial differential equation with time‐varying domain is realized in this work. The transformation of boundary actuation to distributed control setting allows to represent the system's model in a standard evolutionary form. By exploring dynamical model evolution and generating data, a set of time‐varying empirical eigenfunctions that capture the dominant dynamics of the distributed system is found. This basis is used in Galerkin's method to accurately represent the distributed system as a finite‐dimensional plant in terms of a linear time‐varying system. This reduced‐order model enables synthesis of a linear optimal output tracking controller, as well as design of a state observer. Finally, numerical results are prepared for the optimal output tracking of a 2‐D model of the temperature distribution in Czochralski crystal growth process which has nontrivial geometry. © 2014 American Institute of Chemical Engineers AIChE J, 61: 494–502, 2015  相似文献   
110.
We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号