首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   90篇
  国内免费   1篇
电工技术   5篇
化学工业   499篇
金属工艺   17篇
机械仪表   15篇
建筑科学   52篇
矿业工程   1篇
能源动力   26篇
轻工业   297篇
水利工程   13篇
无线电   45篇
一般工业技术   201篇
冶金工业   157篇
原子能技术   6篇
自动化技术   177篇
  2023年   18篇
  2022年   105篇
  2021年   94篇
  2020年   45篇
  2019年   35篇
  2018年   48篇
  2017年   41篇
  2016年   62篇
  2015年   30篇
  2014年   75篇
  2013年   100篇
  2012年   84篇
  2011年   118篇
  2010年   100篇
  2009年   73篇
  2008年   77篇
  2007年   60篇
  2006年   40篇
  2005年   44篇
  2004年   24篇
  2003年   30篇
  2002年   20篇
  2001年   11篇
  2000年   17篇
  1999年   23篇
  1998年   9篇
  1997年   20篇
  1996年   7篇
  1995年   11篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有1511条查询结果,搜索用时 19 毫秒
941.
942.
Efficient nanocomposites, GO-Psf and RGO-Psf has been synthesised from polysulfone and graphene oxide. The synthesised nanomaterials were characterised using contact angle measurements, SEM, TEM, XRD, TGA, DSC, Raman and FT-IR analytical techniques. The reported polymeric nanomaterials are attractive due to their high surface area and thermal stability. The maximum adsorption capacity for ciprofloxacin is 82.781 mg/g and 21.486 mg/g on GO-Psf and RGO-Psf, respectively. The kinetic and adsorption analysis identifies the nanomaterials as attractive adsorbents for removal of antibiotic pollutant, ciprofloxacin from aqueous solution.  相似文献   
943.
944.
Recently, a large number of nanostructured metal‐containing materials have been developed for the electrochemical CO2 reduction reaction (eCO2RR). However, it remains a challenge to achieve high activity and selectivity with respect to the metal load due to the limited concentration of surface metal atoms. Here, it is reported that the bismuth‐based metal–organic framework Bi(1,3,5‐tris(4‐carboxyphenyl)benzene), herein denoted Bi(btb), works as a precatalyst and undergoes a structural rearrangement at reducing potentials to form highly active and selective catalytic Bi‐based nanoparticles dispersed in a porous organic matrix. The structural change is investigated by electron microscopy, X‐ray diffraction, total scattering, and spectroscopic techniques. Due to the periodic arrangement of Bi cations in highly porous Bi(btb), the in situ formed Bi nanoparticles are well‐dispersed and hence highly exposed for surface catalytic reactions. As a result, high selectivity over a broad potential range in the eCO2RR toward formate production with a Faradaic efficiency up to 95(3)% is achieved. Moreover, a large current density with respect to the Bi load, i.e., a mass activity, up to 261(13) A g?1 is achieved, thereby outperforming most other nanostructured Bi materials.  相似文献   
945.
The formation of multifunctional materials involves various simultaneous and closely entangled physicochemical processes including nucleation, growth, aggregation, and in some cases also growth by oriented aggregation. These elementary particle formation processes occur in broad size ranges from the molecular to micrometer level and time scales ranging from seconds to hours. This contribution demonstrates that the in situ monitoring of reaction mixtures and dispersions with several simultaneous analytical and spectroscopic techniques is an effective and widely applicable strategy to achieve an in-depth understanding of the formation of complex particulate structures and to move towards the rational design of materials.  相似文献   
946.
In recent years, acid whey production has increased due to a growing demand for Greek yogurt and acid-coagulated cheeses. Acid whey is a dairy by-product for which the industry has long struggled to find a sustainable application. Bulk amounts of acid whey associated with the dairy industry have led to increasing research on ways to valorize it. Industry players are finding ways to use acid whey on-site with ultrafiltration techniques and biodigesters, to reduce transportation costs and provide energy for the facility. Academia has sought to further investigate practical uses and benefits of this by-product. Although modern research has shown many other possible applications for acid whey, no comprehensive review yet exists about its composition, utilization, and health benefits. In this review, the industrial trends, the applications and uses, and the potential health benefits associated with the consumption of acid whey are discussed. The proximal composition of acid whey is discussed in depth. In addition, the potential applications of acid whey, such as its use as a starting material in the production of fermented beverages, as growth medium for cultivation of lactic acid bacteria in replacement of commercial media, and as a substrate for the isolation of lactose and minerals, are reviewed. Finally, the potential health benefits of the major protein constituents of acid whey, bioactive phospholipids, and organic acids such as lactic acid are described. Acid whey has promising applications related to potential health benefits, ranging from antibacterial effects to cognitive development for babies to human gut health.  相似文献   
947.
Neurodegenerative diseases are characterized by increased permeability of the blood–brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1β-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope–receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit β-1. Among them, only laminin subunit β-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit β-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.  相似文献   
948.
949.
The RM-wrap (RM = Refractory Metal) is a pressure-less, versatile and tailorable joining process: it consists of wrapping Si foils inside a refractory metal wrap (i.e., Mo, Nb, Ta) in order to prevent molten silicon from leaking outside the joined region and infiltrating the facing materials during the joining process.RM-wrap (RM = Mo, Nb, Ta) has been successfully applied to join C/SiC composites in this work: optimized joining treatment consisted of heating to 1450?°C with a heating rate of 1000?°C/h followed by a dwell time of 5?min in a non-reactive environment of Argon flow.The joints were characterized by morphological analysis and lap shear tests at room temperature and 1000?°C.Microscopical analysis revealed an in-situ formed composite joint consisting of a silicon matrix reinforced with silicides of the refractory metals. Joining material exhibited continuous and cracked free bonding with C/SiC irrespective of composite fibre orientation.Joints lap shear strength values at 1000?°C were higher than at room temperature, probably due to the brittle to ductile transition (BTDT) of silicon and silicides.Vickers microhardness on refractory metal disilicides measured inside the joints showed a trend similar to their mechanical strength, with higher lap shear strength and hardness for Mo-Wrap and lower for Ta-wrap joints.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号