首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6008篇
  免费   474篇
  国内免费   56篇
电工技术   67篇
综合类   22篇
化学工业   1486篇
金属工艺   123篇
机械仪表   287篇
建筑科学   115篇
矿业工程   8篇
能源动力   375篇
轻工业   768篇
水利工程   71篇
石油天然气   33篇
武器工业   1篇
无线电   723篇
一般工业技术   1307篇
冶金工业   107篇
原子能技术   54篇
自动化技术   991篇
  2024年   37篇
  2023年   216篇
  2022年   507篇
  2021年   786篇
  2020年   475篇
  2019年   540篇
  2018年   495篇
  2017年   427篇
  2016年   420篇
  2015年   256篇
  2014年   302篇
  2013年   440篇
  2012年   259篇
  2011年   333篇
  2010年   191篇
  2009年   172篇
  2008年   126篇
  2007年   118篇
  2006年   56篇
  2005年   40篇
  2004年   44篇
  2003年   29篇
  2002年   27篇
  2001年   13篇
  2000年   11篇
  1999年   21篇
  1998年   29篇
  1997年   16篇
  1996年   19篇
  1995年   22篇
  1994年   15篇
  1993年   13篇
  1992年   16篇
  1991年   8篇
  1990年   2篇
  1989年   10篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1961年   1篇
排序方式: 共有6538条查询结果,搜索用时 0 毫秒
991.
992.
Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method.The SiC@C NCs were monocrystalline,120-150 nm in size,and approximately 50 nm thick.The formation of the as-prepared SiC@C NCs included nucleation of truncated octahedral SiC seeds and subsequent anisotropic growth of the seeds into hexagonal nanoplatelets in a carbon-rich atmosphere.The disordered carbon layers on the SiC@C NCs were converted into SiO2 shells of SiC@SiO2 NCs by heat treatment at 650 ℃ in air,during which the shape and inherent characteristics of the crystalline SiC core were obtained.The interface evolution from carbon to SiO2 shells endowed the SiC@SiO2 NCs with enhanced photocatalytic activity due to the hydrophilic and transparent nature of the SiO2 shell,as well as to the photosensitive SiC nanocrystals.The band gap of the nanostructured SiC core was determined to be 2.70 eV.The SiC@SiO2 NCs degraded approximately 95% of methylene blue in 160 min under visible light irradiation.  相似文献   
993.
The ternary strategy for incorporating multiple photon-sensitive components into a single junction has emerged as an effective method for optimizing the nanoscale morphology and improving the device performance of organic solar cells (OSCs).In this study,efficient and stable ternary OSCs were achieved by introducing the small-molecule dye (5E,5'E)-5,5'-(4',4″-(1,2-diphenylethene-1,2-diyl)bis(biphenyl-4',4-diyl))bis(methan-1-yl-1-ylidene)bis(3-ethyl-2-thioxothia zolidin-4-one) (BTPERn) into poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiopheneco-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) blend films processed using a 1,8-diiodooctane (DIO)-free solvent.The incorporation of BTPE-Rn enhanced the short-circuit current density and fill factor of the ternary OSCs compared with those of binary OSCs.An investigation of the optical,electronic,and morphological properties of the ternary blends indicated that the third component of BTPE-Rn not only promoted the photon utilization of blends through the energy-transfer process but also improved the electron mobility of the blends owing to the fullerene-rich nanophase optimization.More importantly,this ternary strategy of utilizing a small-molecule dye to replace the photounstable DIO additive enhanced the operational stability of the OSCs.  相似文献   
994.
Hybrid composites of boron carbide (B4C) and Al62.5Cu25Fe12.5 quasicrystals (QCs) were prepared by ball milling and pressureless sintering in aluminium matrix to investigate their individual and hybrid effects on microstructural and mechanical properties. Hybrid composite contained B4C and QCs in 3?wt-% each, making a total of 6?wt-%. For reference, specimens of pure aluminium and two composites containing 6?wt-%B4C and 6?wt-% QCs were prepared. Microstructural characterisation was performed using optical, scanning electron microscopy and X-ray diffraction, while evaluation of mechanical properties was carried out by hardness and compression tests. Uniform dispersion of reinforcements in composites was observed along with significant increase in the mechanical properties. The composite containing 6?wt-% QCs demonstrated the highest hardness, while the hybrid composite showed better compressive properties.  相似文献   
995.
Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbI3/phenyl‐C61‐butyric acid methyl ester (PC61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided.  相似文献   
996.
997.
The full potential linearized augmented plane wave method of density functional theory has been used to investigate the structural, electronic, magnetic and thermoelectric properties of cubic perovskites BaVO3 and LaVO3. The ferromagnetic ground state has been found to be stable by comparing the total energies of non-spin-polarized and spin-polarized calculations performed for optimized unit cells. For both compounds, the bond length and tolerance factor are also measured. From the band structures and density of states plots, it is found that both compounds are half-metallic. We found that the presence of V at the octahedral site of these perovskites develops exchange splitting through p-d hybridization, which results in a stable ferromagnetic state. The observed exchange splitting is further clarified from the magnetic moment, charge and spin of the anion and cations. Finally, we also presented the calculated thermoelectric properties of these materials, which show that half-metallic BaVO3 and LaVO3 materials are potential contenders for thermoelectric applications.  相似文献   
998.
The present study focuses upon the effect of the impeller on sinking and floating behavior of suspending particles in stirred tank reactor, employing computational fluid dynamics (CFD) simulation where factorial design is used to investigate the main and interaction effects of design parameters on the particle distribution performance of four typical impeller designs. Factorial design results show the effect of diameter and width of the impeller and off-bottom clearance on sinking particles is different from that of floating particles and regression equations for sinking particles and floating particles are achieved separately. Meanwhile, optimal equations which quantitatively reveal the effect of impeller factors on suspension quality and energy input is established for impeller improvement. Besides the development of computational models, the combination of CFD simulation with factorial design method provides a useful approach to gain insight into the suspension behavior of sinking and floating particles, also it guides to optimize the impeller design.  相似文献   
999.
This study aimed to screen the stability, disintegration, and swelling behavior of chemically modified anionic polymers. Investigated polymers were well-known and widely used staples of the pharmaceutical and medical field, namely, alginate (AL), carboxymethyl cellulose (CMC), polycarbophil (PC), and hyaluronic acid (HA). On the basis of amide bond formation between the carboxylic acid moieties of anionic polymers and the primary amino group of the modification ligand cysteine (CYS), the modified polymers were obtained. Unmodified polymers served as controls throughout all studies. With the Ellman’s assay, modification degrees were determined of synthesized polymeric excipients. Stability assay in terms of erosion study at physiological conditions were performed. Moreover, water uptake of compressed polymeric discs were evaluated and further disintegration studies according to the USP were carried out to define the potential ranking. Results ranking figured out PCCYS?>?CMCCYS?>?HACYS?>?ALCYS in terms of water uptake capacity compared to respective controls. Cell viability assays on Caco-2 cell line as well as on RPMI 2650 (ATTC CCL30) proved modification not being harmful to those. Due to the results of this study, an intense screening of prominent anionic polymer derivate was performed in order to help the pharmaceutical research for the best choice of polymeric excipients for developments of controlled drug release systems.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号