首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   32篇
  国内免费   4篇
电工技术   17篇
化学工业   206篇
金属工艺   6篇
机械仪表   15篇
建筑科学   28篇
矿业工程   2篇
能源动力   20篇
轻工业   41篇
水利工程   3篇
石油天然气   1篇
无线电   103篇
一般工业技术   175篇
冶金工业   105篇
原子能技术   3篇
自动化技术   106篇
  2024年   1篇
  2023年   3篇
  2022年   13篇
  2021年   21篇
  2020年   15篇
  2019年   12篇
  2018年   16篇
  2017年   21篇
  2016年   23篇
  2015年   21篇
  2014年   26篇
  2013年   42篇
  2012年   29篇
  2011年   30篇
  2010年   29篇
  2009年   37篇
  2008年   37篇
  2007年   30篇
  2006年   40篇
  2005年   26篇
  2004年   20篇
  2003年   27篇
  2002年   29篇
  2001年   23篇
  2000年   14篇
  1999年   15篇
  1998年   39篇
  1997年   33篇
  1996年   29篇
  1995年   18篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   11篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   5篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有831条查询结果,搜索用时 31 毫秒
31.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   
32.
Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.  相似文献   
33.
Poly(tetrahydropyranyl-2-methacrylate) (PTHPMA) was found to be miscible with Poly(vinyl phenol) (PVPH), Poly(hydroxy ether of bisphenol A) (Phenoxy), and Poly(styrene-co-allyl alcohol) (PSAA). However, Poly(cyclohexyl methacrylate) (PCHMA) is immiscible with all these three hydroxyl-containing polymers. Poly(acetonyl methacrylate) (PACMA) was found to be miscible with PVPH but immiscible with Phenoxy and PSAA. Miscible PTHPMA-Phenoxy blends showed lower critical solution temperature behavior.  相似文献   
34.
35.
Nanocrystalline LaPxOy with various starting P to La ratios from 0.5 to 2.0 catalysts were prepared by a sol?Cgel method using cetyl trimethylammonium bromide (CTAB) as template. The catalysts were thoroughly characterized by N2 physisorption, powder X-ray diffraction (XRD), temperature programmed desorption (TPD) of NH3, solid state 31P and 1H nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) techniques. XRD results indicate the presence of predominantly monazite LaPO4 with minor amounts of (??3.0 wt%) rhabdophane LaPO4 phase in the samples with starting P/La ratios of 1.0 and 1.5. NH3-TPD results show an increasing trend in the total acidity with increase in P/La ratio. These catalysts were tested in the selective ethanol dehydration in the temperature range between 250 and 400?°C. The catalyst activity (??mol/h/m2) is increased with P/La ratio and the catalyst with highest P/La ratio of 2.0 exhibiting the highest ethanol dehydration activity. The ethanol conversion increased with reaction temperature, reaching 100% at 350?°C and remains unchanged at higher temperatures. On the other hand, the ethylene selectivity is also increased up to 350?°C and then decreased with further increase of reaction temperature. At a P/La ratio of 2, the CTAB templated LaPxOy catalyst showed higher catalytic activities compared to the LaPxOy by hydrothermal method without any template.  相似文献   
36.
Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as "parent CGTase" herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected.  相似文献   
37.
A series of amorphous fluoro‐polyetherimides based on 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and di‐ether‐containing diamines 4,4′‐bis(3‐aminophenoxy)diphenyl sulfone (m‐SED), 4,4′‐bis(4‐aminophenoxy)diphenyl sulfone (p‐SED), 4,4′‐bis(4‐aminophenoxy)diphenyl propane (BPADE) were synthesized. These melt processable polyetherimide polymers from p‐SED and BPADE showed excellent electrical properties. The dielectric constants, 2.74 and 2.65 at 10 MHz respectively, are lower than commercially available polyetherimide ULTEM® 1000, and polyimide Kapton® H films. In addition, we found that trifluoromethyl groups‐containing polyimides not only show extraordinary electrical properties, but they also exhibit excellent long‐term thermo‐oxidative stability and reduced water absorption relative to non‐fluorinated polyimides. The weight retention of these fluoro‐polyetherimides at 315°C for 300 h in air varies from 93% to 98%. Whereas, their moisture absorption at 100 RH at 50°C was in the range of 0.3% to 1.05%, which is much lower than those of Ultem 1000 and Kapton H. In the case of fluoro‐polyetherimides from p‐SED and m‐SED (para and meta isomers) diamines with ‘ether’ and sulfonyl (‐SO2‐) spacer groups, the d‐spacing and Tg values decreased from 4.72Å to 4.56Å and 293°C to 244°C respectively. Similarly, the transparency of these polymer films (in the range of 80% to 90%) at 500 nm solar wavelength was higher than Ultem 1000 and Kapton H.  相似文献   
38.
Two-step synthesis of proton-conducting poly(ether sulfone) (PES) graft copolymer electrolyte membrane is proposed. Fridel Craft alkylation reaction was used to introduce chloromethyl pendant group onto the PES polymer backbone. Later on, atom transfer radical polymerization (ATRP) was applied to synthesize a series of poly(ether sulfone) grafted poly(styrene sulfonic acid) (PES-g-PSSA). Successful chloromethyl substitution and grafting of the pendant group was characterized by the 1H-NMR and elemental analysis. Electrochemical properties such as ion exchange capacity (IEC), water uptake and proton conductivity increased with increasing PSSA contents. Thermal gravimetric analysis (TGA) showed the thermal stability of membranes up to 270 °C. Proton conductivity for maximum amount of grafting was 0.00297 S/cm.  相似文献   
39.
Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8–10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.  相似文献   
40.
本研究在单因素试验的基础上,利用Box.Benhnken的中心组合试验设计及响应面分析法优化磷脂酶LeeitaseUltra对茶油脱胶的工艺,建立反应时间、反应温度、酶用量与磷脂脱除率之间的数学模型,确立酶法对茶油脱胶的最佳工艺条件,即反应时间4.3h、反应温度47℃、酶用量44mg/kg。在此最佳工艺条件下,茶油脱胶率达89.41%(n=3)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号