首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   825篇
  免费   42篇
  国内免费   10篇
电工技术   6篇
综合类   1篇
化学工业   209篇
金属工艺   17篇
机械仪表   33篇
建筑科学   19篇
能源动力   51篇
轻工业   116篇
水利工程   3篇
石油天然气   6篇
无线电   85篇
一般工业技术   169篇
冶金工业   18篇
原子能技术   5篇
自动化技术   139篇
  2024年   8篇
  2023年   15篇
  2022年   27篇
  2021年   45篇
  2020年   45篇
  2019年   38篇
  2018年   53篇
  2017年   41篇
  2016年   45篇
  2015年   39篇
  2014年   36篇
  2013年   80篇
  2012年   56篇
  2011年   48篇
  2010年   45篇
  2009年   36篇
  2008年   32篇
  2007年   32篇
  2006年   13篇
  2005年   15篇
  2004年   19篇
  2003年   16篇
  2002年   13篇
  2001年   12篇
  2000年   12篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有877条查询结果,搜索用时 0 毫秒
81.
This paper presents a molecular mechanics study using a molecular dynamics software (NAMD) coupled to virtual reality (VR) techniques for intuitive bio-nanorobotic prototyping. Using simulated bio-nano environments in VR, the operator can design and characterize through physical simulation and 3D visualization the behavior of protein-based components and structures. The main novelty of the proposed simulations is based on the characterization of stiffness performances of passive joints-based proteins (α-helix deca-alanine, repressor of primer protein and immunoglobulin protein) and active joints-based viral protein motor (VPL) in their native environment. Their use as elementary bio-nanorobotic components are also simulated and the results discussed.  相似文献   
82.
The degradation of two commercially available dyestuffs (C.I. Reactive Black 5 and C.I. Disperse Orange 25) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55 W immersed-type low-pressure mercury vapor lamp and a sonoreactor with low frequency (42 kHz) plate type transducer at 170 W of acoustic power. The toxicity was also evaluated in acute toxicity studies using Daphnia magna. Results showed that color removal efficiencies by US and US/H2O2 processes were negligible for both dyes. Almost complete disappearance of Reactive Black 5 (97.9%) in UV/H2O2 process was possible after 5 min of irradiation. The maximum color removal efficiency of Disperse Orange 25 after 10 min of irradiation, however, was only 9.2% and reached a maximum value of 41% after 120 min of irradiation. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. The results clearly showed that both dyes examined were toxic to D. magna and resulted in quite low LC50 values.  相似文献   
83.
84.
This article aims at investigating the effects of hygrothermal aging on the damage mechanisms of short white Hemp Fiber Reinforced Polypropylene (HFRP) composites with various fiber contents (10, 20, 30, and 40 wt%). Injected molded specimens were subjected to hygrothermal aging with a relative humidity of 80% and two temperatures, 25 and 50°C. The water absorption and its effect on tensile properties of HFRP composites were investigated. The Acoustic Emission (AE) technique combined with scanning electron microscopy observations was used to identify microstructural damage events leading to overall failure of the HFRP composites. This identification according to hemp‐fiber content and hygrothermal aging was made with an unsupervised method based on a statistical multi‐variable analysis (k‐means algorithm). The AE results indicate that the quality of fiber‐matrix interface plays a major role in the damage process of HFRP composites, shown by the number of AE signals induced by the interface failure and their amplitude ranges. POLYM. COMPOS. 37:1101–1112, 2016. © 2014 Society of Plastics Engineers  相似文献   
85.
In this paper, we present the integration of an absorbing photonic crystal within a thin-film photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning the hydrogenated amorphous silicon active layer as a 2D photonic crystal membrane enabled to increase its integrated absorption by 28 % between 300 and 720 nm, comparing to a similar but unpatterned stack. In order to fabricate such promising cells, we developed a high throughput process based on holographic lithography and reactive ion etching. The influences of the parameters taking part in those processes on the obtained patterns are discussed. Optical measurements performed on the resulting “photonized” solar cell structures underline the regularity of the 2D pattern and a significant absorption increase above 550 nm, similarly to what is observed on the simulated absorption spectra. Moreover, our patterned cells are found to be robust with regards to the angle of incidence of the light.  相似文献   
86.
Applied Intelligence - Traumatic Brain Injury (TBI) could lead to intracranial hemorrhage (ICH), which has now been identified as a major cause of death after trauma if it is not adequately...  相似文献   
87.
CO2 based power and refrigeration cycles have been developed and analyzed in different existing studies. However, the development of a CO2 based comprehensive energy system and its performance analysis have not been considered. In this study, the integration of a CO2 based solar parabolic trough collector system, a supercritical CO2 power cycle, a transcritical CO2 power cycle, and a CO2 based cascade refrigeration system for hydrogen production and multigeneration purpose is analyzed thermodynamically. This study aims to analyze and compare the difference in the thermodynamic performance of comprehensive energy systems when CO2 is used as the working fluid in all the cycles with a system that uses other working fluids. Therefore, two comprehensive energy systems with the same number of subsystems are designed to justify the comparison. The second comprehensive energy system uses liquid potassium instead of CO2 as a working fluid in the solar parabolic trough collector and a steam cycle is used to replace the transcritical CO2 power cycle. Results of the energy and exergy performance analysis of two comprehensive energy systems showed that the two systems can be used for the multigeneration purpose. However, the use of a steam cycle and potassium-based solar parabolic trough collector increases the comprehensive energy systems’ overall energy and exergy efficiency by 41.9% and 26.7% respectively. Also, the use of liquid potassium as working fluid in the parabolic trough collectors increases the absorbed solar energy input by 419 kW and 2100 kW thereby resulting in a 23% and 90.7% increase in energetic and exergetic efficiency respectively. The carbon emission reduction potential of the two comprehensive energy systems modelled in this study is also analyzed.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号