首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   6篇
电工技术   2篇
化学工业   63篇
金属工艺   13篇
机械仪表   9篇
建筑科学   6篇
能源动力   22篇
轻工业   14篇
水利工程   1篇
石油天然气   2篇
无线电   5篇
一般工业技术   28篇
冶金工业   10篇
原子能技术   7篇
自动化技术   10篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2014年   4篇
  2013年   5篇
  2012年   17篇
  2011年   16篇
  2010年   11篇
  2009年   11篇
  2008年   14篇
  2007年   12篇
  2006年   8篇
  2005年   3篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有192条查询结果,搜索用时 0 毫秒
61.
Acrylic acid (AA) was grafted to cellulose by using ceric ammonium nitrate (CAN) initiator in aqueous nitric acid solution at 30, 50, 70, and 90°C during reaction periods of 30 to 180 minutes. About 45% of the AA was polymerized at 90°C after 180 minutes. The grafted polymer and homopolymer were isolated by acetone from the reaction mixture, dried, and subjected to Soxhlet extraction with dioxane to separate the homopolymer, poly(acrylic acid), from the graft copolymer. The water absorption capacities and grafting values of grafted cellulose were also determined. The maximum grafting yield was obtained at 30°C. It was also observed that polyacrylic acid-grafted cellulose produced at 30°C had the highest water retention capacity. The time dependence of AA conversion allowed calculation of first-order reaction rate constants. These rate constants were then used to determine apparent activation energies. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 929–934, 1997  相似文献   
62.
Functionalized sepiolite for heavy metal ions adsorption   总被引:2,自引:0,他引:2  
Surface modification of clays has become increasingly important due to the practical applications of clays such as fillers and adsorbents. The surface modification of sepiolite with [3-(2-aminoethylamino)propyl]trimethoxysilane has been employed. The modified sepiolite surface was investigated by FTIR, XRD and DTA/TG analysis. It was found that the chemical bonding takes place between the hydroxyl groups and/or oxygen atoms within the structure of sepiolite and methoxy groups of [3-(2-aminoethylamino)propyl]trimethoxysilane. The changes on electrokinetic properties of modified sepiolite particles were studied by measuring the zeta potential of particle as a function of metal concentration and equilibrium pH of solution. It was found that the zeta potential of the clay particles was always negative independent of the metal concentration in solution. This study also provides some evidence for the adsorption of metal ions on modified sepiolite. The adsorption of metal ions onto modified sepiolite has varied with the type of metal cations. The available basic nitrogen centers covalently bonded to the sepiolite skeleton were studied for Co(II), Cu(II), Mn(II), Zn(II), Fe(III) and Cd(II) adsorption from aqueous solutions. It was found that the amount of metal ion adsorbed onto modified sepiolite increases with increase in solution equilibrium pH and temperature, whereas it generally decreases with the ionic strength. The experimental data were correlated reasonably well by the Langmuir adsorption isotherm and the isotherm parameters (qm and K) were calculated. The ability to adsorb the cations gave a capacity order of Zn(II) > Cu(II) ~ Co(II) > Fe(III) > Mn(II) > Cd(II) with affinities of 2.167×10−4, 1.870×10−4, 1.865×10−4, 1.193×10−4, 0.979×10−4 and 0.445×10−4 mol g−1, respectively.  相似文献   
63.
In this study, we focused on the preparation and characterization of poly(ethylene glycol) (PEG)/poly(methyl methacrylate) (PMMA) blends as novel form‐stable phase‐change materials (PCMs) for latent‐heat thermal energy storage (LHTES) applications. In the blends, PEG acted as a PCM when PMMA was operated as supporting material. We subjected the prepared blends at different mass fractions of PEG (50, 60, 70, 80, and 90% w/w) to leakage tests by heating the blends over the melting temperature of the PCM to determine the maximum encapsulation ratio without leakage. The prepared 70/30 w/w % PEG/PMMA blend as a form‐stable PCM was characterized with optical microscopy and Fourier transform infrared spectroscopy. The thermal properties of the form‐stable PCM were measured with differential scanning calorimetry (DSC). DSC analysis indicated that the form‐stable PEG/PMMA blend melted at 58.07°C and crystallized at 39.28°C and that it had latent heats of 121.24 and 108.36 J/g for melting and crystallization, respectively. These thermal properties give the PCMs potential LHTES purposes, such as for solar space heating and ventilating applications in buildings. Accelerated thermal cycling tests also showed that the form‐stable PEG/PMMA blend as PCMs had good thermal reliability and chemical stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
64.
This work is focused on the preparation, characterization, and determination of thermal energy storage properties of poly(n‐butyl methacrylate) (PnBMA)/fatty acid composites as form‐stable phase change material (PCM). In the composite materials, the fatty acids act as latent heat storage material whereas PnBMA serves as supporting material, which prevents the leakage of the melted fatty acids. The maximum encapsulation ratio for all fatty acids was found to be 40 wt%. The composites that do not allow PCM leakage in melted state were identified as form‐stable PCMs. The compatibility of fatty acids with PnBMA is investigated by optical microscopy (OM) and Fourier Transform Infrared (FT‐IR) spectroscopy. Thermal properties and thermal reliability of the form‐stable composite PCMs were determined using differential scanning calorimetry (DSC). DSC analysis revealed that the form‐stable composite PCMs had melting temperatures between 29.62°C and 53.73°C and latent heat values between 67.23 J/g and 87.34 J/g. Thermal stability of the composite PCMs was studied by thermal gravimetric (TG) analysis and the results indicated that the form‐stable PCMs had good thermal stability. In addition, thermal cycling test showed that the composite PCMs had good thermal reliability with respect to the changes in their thermal properties after accelerated 5,000 thermal cycling. On the basis of all results, it was also concluded that the prepared form‐stable composite PCMs had important potential for many thermal energy storage applications such as solar space heating of buildings by using wallboard, plasterboard or floors integrated with PCM. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   
65.
The purpose of this paper is to present an experimental design and application of a novel model-based fault detection technique by using a nonlinear minimum variance (NMV) estimator. The NMV estimation technique is used to generate a residual signal which is then used to detect faults in the system. The main advantage of the approach is the simplicity of the nonlinear estimator theory and the straightforward structure of the resulting solution. The proposed method is implemented and validated experimentally on DC servo system. Experimental results demonstrate that the technique can produce acceptable performance in terms of fault detection and false alarm.  相似文献   
66.
This paper presents a review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to changes in thermal conditions (thermal errors of machine tools). The topics are focused on metal cutting machine tools, especially on turning and milling machines as well as machining centres. The topics of the paper thermal issues in machine tools include measurement of temperatures and displacements, especially displacements at the tool centre point, computations of thermal errors of machine tools, and reduction of thermal errors. Computing the thermal errors of machine tools include both, temperature distribution and displacements. Shortly addressed is also to avoid thermal errors with temperature control, the influence of fluids and a short link to energy efficiency of machine tools. The paper presents the summary of research work in the past and current. Research challenges in order to achieve a thermal stable machine tool are discussed. The paper apprehend itself as an update and not a substitution of two published keynote papers of Bryan et al. [28] in 1990 and Weck et al. [199] in 1995.  相似文献   
67.
In this study, Turkey's energy sector was overviewed during the period of 1970–2002. The total energy consumption (TEC) was modeled by using the economic growth (proxied by gross national product—GNP) and population increase, which are the two important factors to determine the energy consumption for developing countries. In addition, the relationship between the TEC and total CO2 (TCO2) emission was studied. For this purpose, regression analysis was performed and the strong relationship between TEC and TCO2 (R2=0.998R2=0.998) was modeled. Also, results showed that a regression model can be used to predict the TEC from the country population and the GNP with high confidence (R2=0.996R2=0.996).  相似文献   
68.
Polymeric solid-solid phase change materials (S-SPCMs) are functional materials with phase transition-heat storing/releasing ability. With this respect, a series of polyethylene glycol (PEG) grafted styrenic copolymer were produced as novel S-SPCMs. PEGs with three different molecular weights were used for synthesis of isocyanate-terminated polymers (ITPs). To achieve cross-linking S-SPCMs, the ITPs were grafted with styrene-co-ally alcohol) (PSAA) at three different PSAA:PEG mole ratios. The produced polymers were characterized using Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD) technique. The crystalline-amorphous phase transitions of the polymers were examined using polarized optical microscopy (POM). The FT-IR, NMR, and XRD results confirmed the expected chemical structures and crystallization performances of the polymers. Thermal energy storage (TES) properties of the S-SPCMs were determined by differential scanning calorimetry (DSC). The DSC results revealed that the polymers with grafting ratio of PSAA:PEG(1:1) had phase transition enthalpies between about 74 and 142 J/g and phase transition temperatures between about 26°C and 57°C. Thermogravimetric analysis (TGA) measurements demonstrated that the S-SPCMs were resistant to thermal decomposition until about 300°C. Thermal conductivities of the produced S-SPCMs were measured in a range of about 0.18 to 0.19 W/mK. Furthermore, TES properties of the S-SPCMs were slightly changed as their chemical structures were remained after 5000 thermal cycles. By overall evaluation of the findings, it can be foreseen that particularly PSAA-g-PEG(1:1) polymers can be considered as promising S-SPCMs for some TES practices such as air conditioning of buildings, thermoregulation of food packages, automobile components, electronic devices, and solar photovoltaic panels.  相似文献   
69.
70.
Summary In situ fluorescence and light scattering techniques were used to study the formation of heterogeneities during the free-radical crosslinking polymerization of sodium acrylate (NaAc) in the presence of N,N'-methylene(bisacrylamide) (BAAm) as a crosslinker. Pyranine was used as a fluorescence probe in the experiments. The reactions were carried out at room temperature and at a monomer concentration of 20.6 w/v% in water. It was found that the gel forming system became turbid at the start of the reaction; continuing polymerization and crosslinking reactions turned the opaque gels into slightly opaque and finally transparent gels. Two peaks were observed both in the scattered and emitted light intensities versus the reaction time plots. The first peak corresponds to the formation and growth of the phase separated domains whereas the second peak reflects the macrogelation point in the reaction system. Received: 14 June 1999/Revised version: 10 October 1999/Accepted: 10 October 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号