Tungsten inert gas (TIG) welded joints between Zircaloy-4 and stainless steel 304L have been studied by scanning electron
microscope (SEM) having energy dispersive system (EDS) as an attachment. Intermetallic compound Zr(Cr, Fe)2 and Zr2Fe–Zr2Ni eutectic phase have been observed in the molten zone. The surface area occupied by intermetallic compound Zr(Cr, Fe)2 is about twice compared to Zr2Fe–Zr2Ni eutectic phase. The shape of the intermetallic compound is rod like. The phases were also identified by using X-ray diffraction
(XRD) technique. EDS and XRD results are quite in agreement. 相似文献
Adsorption of industrially important dyes namely bromophenol blue, alizarine red-S, methyl blue, methylene blue, eriochrome black-T, malachite green, phenol red and methyl violet from aqueous media on activated charcoal has been investigated. The effect of shaking time, pH and temperature on the adsorption behaviour of these dyes has been studied. It was noted that adsorption of all the dyes on activated charcoal decreases with an increase in the pH and the temperature. The adsorption isotherms at different temperatures were found to be of L-type. Adsorption data was fitted to Freundlich, BET and Langmuir isotherms and various adsorption parameters have been calculated. The thermodynamic parameters such as DeltaG, DeltaH and DeltaS were calculated from the slopes and intercepts of the linear variation of lnK against 1/T, where K is the adsorption coefficient obtained from Langmuir equation, was used. The calculated values for the heat of adsorption and the free energy indicate that adsorption of dyes is favored at low temperatures and the dyes are chemisorbed on activated charcoal. 相似文献
To enhance the metal removing capacity of a fungus biosorbent, a new idea of producing a hybrid biosorbent (HB) matrix by combining two different biosorbents using a simple and low-cost immobilization technique was tested for the sorption of Cd(II). The two biosorbents, used as the building block for the production of HB matrix, were the fungal biomass of Phanerochaete chrysosporium (B1) and fibrous network of papaya wood (B2). Maximum independent biosorption capacity of B1 and B2 was noted, respectively, to be 71.36 and 17.62 mgCd(II)g(-1) biosorbent. However, when two biosorbents were hybridized to form HB matrix, the combined biosorption capacity (141.63 mgCd(II)g(-1) biosorbent) was increased by 98.47, 703.80%, respectively, as compared to the ability of B1 and B2 when used alone, and by 59.17% than the sum of separate individual abilities of biosorbents B1 and B2. The kinetics of equilibrium was fast, approximately 88% of Cd(II) biosorption taking place within 30 min. Biosorption kinetics and equilibria followed the pseudo-second order kinetics and Langmuir adsorption isotherms model. HB matrix was also shown to be highly effective in removing Cd(II) from aqueous solution in a continuous flow fixed-bed column bioreactor, both in batch and repeated cycles. 相似文献
We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement. 相似文献
Safety and reliability are absolutely important for modern sophisticated systems and technologies. Therefore, malfunction monitoring capabilities are instilled in the system for detection of the incipient faults and anticipation of their impact on the future behavior of the system using fault diagnosis techniques. In particular, state-of-the-art applications rely on the quick and efficient treatment of malfunctions within the equipment/system, resulting in increased production and reduced downtimes. This paper presents developments within Fault Detection and Diagnosis (FDD) methods and reviews of research work in this area. The review presents both traditional model-based and relatively new signal processing-based FDD approaches, with a special consideration paid to artificial intelligence-based FDD methods. Typical steps involved in the design and development of automatic FDD system, including system knowledge representation, data-acquisition and signal processing, fault classification, and maintenance related decision actions, are systematically presented to outline the present status of FDD. Future research trends, challenges and prospective solutions are also highlighted.
The production of trans-fats and chemical changes during the process of frying are serious public health concerns and must be monitored efficiently. For this purpose, the canola oil was formulated with different ratio of extra virgin olive oil and palm olein using D-optimal mixture design, and the best formulation (67:22:11) based on free fatty acid (FFA) content, peroxide value (PV), and iodine value (IV) as responses was selected for multiple frying process. The data on FFA, PV, and IV along with Fourier transform-infrared (FT-IR) spectra were taken after each frying up to ten frying. The spectral data were preprocessed with standard normal variate followed by principal component analysis which is clearly showing the differentiation for various frying. Similarly, partial least square regression was applied to predict the FFA (0.37%–1.63%), PV (4.47–13.85 meqO2/kg), and IV (111.51–51.39 I2/100 g) which demonstrated high coefficient of determination (R2) 0.84, 0.83, and 0.81, respectively. It can be summarized that FT-IR can be used as a novel tool for fast and noninvasive quality determination of frying oils. 相似文献
Peripheral nerve injuries are among those complicated medical conditions, which are still waiting for their highly effective first-line therapies. In this study, the role of Calotropis procera crude leaves was evaluated at different doses for their effectiveness in improving functional recovery following sciatic nerve injury-induced in the mouse model. Thirty-two healthy albino mice were divided into four groups as Normal chow group (control, n = 8) and C. procera chow groups (50 mg/kg (n = 8), 100 mg/kg (n = 8) and 200 mg/kg (n = 8)). Behavioral analyses were performed to assess and compare improved functional recovery along with skeletal muscle mass measurement in all groups. Serum samples were analyzed for oxidative stress markers. Results showed that C. procera leaves at dose-dependent manner showed statistically prominent (p < .05) increase in sensorimotor functions reclamation as confirmed by behavioral analyses along with muscle mass restoration and prominent decline in TOS and momentous increase in TAC along with the augmented activity of antioxidative enzymes. 相似文献
Peripheral nerve injury (PNI) is one of the major health concerns faced by the community at present. Till now, available therapeutic approaches are ineffective to fully heal a nerve injury and to assure the functional recovery entirely. Natural compounds can prove attractive and effective drug candidates to bridge up this gap. In this scenario, the present study was designed to explore the role of methanolic extract of Foeniculum vulgare (F. vulgare) seeds in accelerating the function regain following a sciatic nerve injury in a mouse model. For this purpose, 12 adult healthy albino mice (BALB/C), 8–10 weeks old, were grouped as control (Ctrl, n = 6) and treatment (Trt, n = 6). The treated group was given methanolic extract of F. vulgare (200 mg/kg per day) started from the day of nerve crush until the end of the study. The sensorimotor function regain assessed by hot plate test, grip strength, and SFI assessments was found significantly (p < .05) ameliorated in the F. vulgare-treated group. A prominent improvement in the muscle mass of the treated group further affirmed these effects. Furthermore, morphometric analysis of muscle fiber cross-sectional area of tibialis anterior muscle between groups revealed a noticeable improvement in muscle fibers’ diameter of the treated group. Conclusively, these findings suggest that F. vulgare methanolic extract exhibits the potential to escalate functional recovery following a peripheral nerve injury. However, the real players of this extract and the mechanism involved in boosting functional restoration need to be dissected by further work. 相似文献
利用本文方法对烘焙产品进行质量检测的结果与其它方法相比较,发现本文提出的基于生物启发的机器视觉系统运行更加精确和有效,同时发现采用One Versus One支持向量机和Directed Acyclic Graph支持向量机可以得到最大的分类精确率。本文方法对饼干形状和颜色的辨识分别达到了95%和100%的分类精确率。同时,算法稳定。