首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   29篇
  国内免费   2篇
电工技术   14篇
综合类   1篇
化学工业   134篇
金属工艺   22篇
机械仪表   22篇
建筑科学   30篇
能源动力   31篇
轻工业   71篇
水利工程   3篇
石油天然气   13篇
无线电   47篇
一般工业技术   101篇
冶金工业   23篇
原子能技术   1篇
自动化技术   108篇
  2024年   2篇
  2023年   6篇
  2022年   21篇
  2021年   46篇
  2020年   25篇
  2019年   17篇
  2018年   39篇
  2017年   24篇
  2016年   19篇
  2015年   15篇
  2014年   33篇
  2013年   35篇
  2012年   18篇
  2011年   34篇
  2010年   28篇
  2009年   31篇
  2008年   29篇
  2007年   22篇
  2006年   18篇
  2005年   16篇
  2004年   15篇
  2003年   10篇
  2002年   12篇
  2001年   10篇
  2000年   5篇
  1999年   7篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1967年   1篇
排序方式: 共有621条查询结果,搜索用时 15 毫秒
611.
612.
This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce3+ ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.  相似文献   
613.
614.
In this study, smooth hound protein hydrolysates (SHPHs), obtained by treatment with various gastrointestinal proteases, were analyzed for their angiotensin I-converting enzyme (ACE) inhibitory activities. Protein hydrolysates were obtained by treatment with crude alkaline enzyme extract, low molecular weight (LMW) alkaline protease, trypsin-like protease and pepsin from Mustelus mustelus, and bovine trypsin. All hydrolysates exhibited inhibitory activity toward ACE. Hydrolysate generated with alkaline protease extract displayed the highest ACE inhibitory activity, and the higher inhibition activity (82.6% at 2 mg/mL) was obtained with a hydrolysis degree of 18.8%. This hydrolysate was then fractionated by size exclusion chromatography on a Sephadex G-25 into five major fractions (P1–P5). ACE inhibitory activities of all fractions were assayed, and P3 was found to display a high ACE inhibitory activity (62.24% at 1 mg/mL). P3 was then fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and ten fractions of ACE inhibitors were found (F1–F10). Sub-fraction F3 showed the strongest ACE inhibitory activity, being able to suppress more than 60% of initial enzyme activity at a concentration of 100 μg/mL. The amino acid sequence of peptide F3 was determined by ESI/MS and ESI–MS/MS as Ala-Gly-Ser, and the IC50 value for ACE inhibitory activity was 0.13 ± 0.03 mg/mL. Further, purified peptide F3 maintained inhibitory activity even after in vitro digestion with gastrointestinal proteases in order to demonstrate gastrointestinal stability digestion to enable oral application. These results indicate that smooth hound protein hydrolysate possesses potent antihypertensive activity.  相似文献   
615.
The superiority of minimal nanolubrication for effective, efficient and cleaner machining environment has been widely discussed in the literature. However, due to their high surface energy, nanoparticles coagulate or agglomerate easily, which makes it difficult to disperse them in the base fluid. Hence, the addition of a small amount of surfactant should be able to overcome this issue. This research elucidates and extends fundamental knowledge regarding the effect of a sodium dodecyl benzene sulfonate surfactant mixed with different nanoparticle concentrations towards the sustainable machining of titanium alloy using design of experiment methodology. The experimental results indicate that the inclusion of a sodium dodecyl benzene sulfonate surfactant in aluminium oxide nanolubricant provides the best lubricating properties for the machining of the titanium alloy. At 0.4 wt% of nanoparticles and a feed rate of 0.1 mm/rev, minimum values of surface roughness and power consumption can be achieved. Meanwhile, minimal tool wear can be attained by application of a 0.6 wt% nanoparticle concentration and 0.1 mm/rev feed rate. Further statistical analyses emphasized that the feed rate was the most significant factor that influenced the surface roughness and power consumption, while the mixture of nanoparticles with surfactant and feed rate has the greatest effect on the tool wear resistance of the cutting insert.  相似文献   
616.
617.
618.
619.
This study deals with the design and fabrication of parabolic trough solar collectors (PTCs) used to increase the yield of a single slope solar still. The designed parabolic trough solar collector is investigated numerically using Ansys Fluent 18.2. The proposed solar still is coupled with a parabolic trough solar collector with an evacuated tube receiver in its focal axis using different working fluids. The working fluids are water (case 1), oil (case 2), and nano-oil (CuO/mineral oil 3% vol; case 3). In the case when the working fluid is not water, then a heat exchanger serpentine should be used in the solar still basin. The PTC has a rim angle of 82° and an aperture width of 0.9 m and length of 2.8 m. An assessment of the performance for the studied systems was accomplished under the weather conditions of Ismailia, Egypt, during summer months, June, July, and August 2019. The outcomes of closed-loop working fluids different flow rates are investigated. The experimental results of the accumulated freshwater productivities record 2.955, 3.475, 4.29, and 5.04 L m−2 d−1 for the traditional solar still and the modified cases 1 to 3 solar stills, respectively. The modified solar still in case 3 has the highest daily accumulated freshwater productivity with a percentage increase of 71.2% than the traditional solar still. The maximum daily efficiency is 46% and 26.9% for the traditional and modified (case 3) solar stills, respectively. The cost of 1 L of fresh water is 0.057 and 0.062 $/L for the traditional and the modified (case 3) solar stills, respectively.  相似文献   
620.
In this paper, we have investigated the peristaltic motion with heat and mass transfer through a vertical channel divided into two equal regions, the right region filled with a clear non-Newtonian fluid obeying the Williamson model and the left region with a nano-Williamson fluid. The system is stressed by a gravity force with a uniform external magnetic field. The problem is modulated mathematically with a system of coupled nonlinear partial differential equations that describe the velocities, temperatures, and concentration of the fluids. The system of nondimensional, nonlinear, and partial differential equations is solved analytically with the homotopy perturbation method after using the approximations of low Reynolds number and long wavelength. The obtained solutions are functions of the physical parameters of the problem. Then, the effects of these parameters on velocities, temperatures, and concentration are discussed numerically and illustrated graphically through a set of figures. It is found that the parameters play an important role in controlling the solutions. It is shown that the stream function decreases on the left side and increases on the right side with an increase in the Wissenberger parameter and thermal conductivity ratio. Also, the temperature in the two regions increases with an increase in the thermophoretic parameter, whereas it decreases with an increase in the Brownian motion parameter. Furthermore, the concentration increases with an increase in the Brownian motion parameter and decreases with an increase in the thermophoretic parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号