首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9376篇
  免费   438篇
  国内免费   13篇
电工技术   132篇
综合类   39篇
化学工业   2382篇
金属工艺   247篇
机械仪表   206篇
建筑科学   631篇
矿业工程   20篇
能源动力   312篇
轻工业   909篇
水利工程   90篇
石油天然气   56篇
武器工业   1篇
无线电   703篇
一般工业技术   1547篇
冶金工业   570篇
原子能技术   59篇
自动化技术   1923篇
  2023年   91篇
  2022年   223篇
  2021年   379篇
  2020年   208篇
  2019年   217篇
  2018年   308篇
  2017年   257篇
  2016年   332篇
  2015年   247篇
  2014年   370篇
  2013年   659篇
  2012年   500篇
  2011年   647篇
  2010年   454篇
  2009年   521篇
  2008年   482篇
  2007年   432篇
  2006年   359篇
  2005年   307篇
  2004年   283篇
  2003年   267篇
  2002年   201篇
  2001年   147篇
  2000年   142篇
  1999年   121篇
  1998年   136篇
  1997年   133篇
  1996年   102篇
  1995年   79篇
  1994年   86篇
  1993年   90篇
  1992年   65篇
  1991年   61篇
  1990年   63篇
  1989年   69篇
  1988年   52篇
  1987年   51篇
  1986年   54篇
  1985年   60篇
  1984年   65篇
  1983年   47篇
  1982年   39篇
  1981年   38篇
  1980年   41篇
  1979年   34篇
  1978年   37篇
  1977年   34篇
  1976年   39篇
  1975年   43篇
  1973年   36篇
排序方式: 共有9827条查询结果,搜索用时 15 毫秒
991.
The reinforcement of a specifically developed fine grained cement matrix with glass fibre textiles in high fibre volume fractions creates a fire safe composite that has-besides its usual compressive strength-an important tensile capacity and omits the need for any steel reinforcement. Strongly curved shells made of textile reinforced cement composites (TRC) can cover medium (up to 15 m) span spaces with three times smaller shell thicknesses than conventional steel-reinforced concrete shells. This paper presents a methodology to generate force-modelled anticlastic shell shapes that exploit both the tensile and compressive load carrying capacities of TRC. The force-modelling is based on the dynamic relaxation form finding method developed for gravity (in this case self-weight) loaded systems. The potential of the presented methodology to develop structurally sound anticlastic shell shapes is illustrated by four case studies.  相似文献   
992.
This article deals with the experimental and numerical blast study on a single empty recyclable metal beverage can. The idea is to make a macro-foam (sacrificial cladding structure) out of these cans to protect the main load bearing members of civil engineering structures from the air blast load. Close-range free air blast tests have been conducted to understand the crushing behaviour and the energy absorption of a single empty beverage can in detail. To conduct such an air blast test a special small-scale test set-up was designed and manufactured. The effect of skin plate surface area and its nature on the blast parameters is studied. Furthermore, the effect of inertia of the skin plate on the crushing performance of the beverage can is evaluated. Tests have been conducted with different plates (made of aluminium and sandwich composite materials) with different masses which represent the skin plate of the proposed sacrificial structure. The measured blast parameters from the experimental tests were compared with ConWep predicted data. Furthermore, the influence of the finite surface area of the skin plate on the clearing of the reflected pressure waves was also studied. The deformation behaviour and the corresponding energy absorption of empty beverage cans were captured. During the experimental blast tests it was observed that a part of the total reflected impulse (∼30%) was lost before it transfers to the non-sacrificial structure. Hence, in order to investigate this phenomenon Eulerian-Lagrangian coupled analyses were conducted using Hydrocodes. The results from these analyses showed that the diffraction and ground reflected pressure wave caused the loss in impulse. The results from the numerical studies have been compared and validated with the experimental results.  相似文献   
993.
This paper presents a vision of how state-of-the-art computer-based analysis techniques can be effectively used during the design of daylit spaces. Following a review of recent advances in dynamic daylight computation capabilities, climate-based daylighting metrics, occupant behavior and glare analysis, a fully integrated design analysis method is introduced that simultaneously considers annual daylight availability, visual comfort and energy use: Annual daylight glare probability profiles are combined with an occupant behavior model in order to determine annual shading profiles and visual comfort conditions throughout a space. The shading profiles are then used to calculate daylight autonomy plots, energy loads, operational energy costs and green house gas emissions. The paper then shows how simulation results for a sidelit space can be visually presented to simulation non-experts using the concept of a daylighting dashboard. The paper ends with a discussion of how the daylighting dashboard could be practically implemented using technologies that are available today.  相似文献   
994.
Water structure is the most important parameter that influences the flotation of soluble salts. In this paper bubble attachment time measurements and FTIR analyses were performed to investigate the effect of water structure on the flotation behavior of sylvite (KCl), bischofite (MgCl2·6H2O) and carnallite (KMgCl3·6H2O). The results from bubble attachment time measurements suggest that collector adsorption at the surface of KCl induces flotation with either the cationic collector, ODA, or anionic collector, SDS. In contrast bubble attachment did not occur for bischofite (MgCl2·6H2O) or carnallite (KMgCl3·6H2O). Results show that the surface charge is not a determining factor in the flotation of soluble salts.Further, the interaction between water molecules and the three chloride salts dissolved in aqueous solution were studied by measuring the shift in the hydrogen-bonding of water molecules. The results indicate that KCl is a structure breaker salt, while MgCl2·6H2O and KMgCl3·6H2O are structure maker salts.Viscosities for the brines of these three salts were determined. The results give additional evidence of differences in water structure and are in good agreement with the FTIR and bubble attachment results. The findings provide further evidence that water structure plays an important role in the flotation of soluble salts.  相似文献   
995.
996.
997.
998.
The lithium sulfur battery system has been studied since the late 1970s and has seen renewed interest in recent years. However, even after three decades of intensive research, prolonged cycling can only be achieved when a large excess of electrolyte and lithium is used. Here, for the first time, a balanced and stable lithium sulfur full cell is demonstrated with silicon–carbon as well as all‐carbon anodes. More than 1000 cycles, a specific capacity up to 1470 mAh g?1 sulfur (720 mAh g?1 cathode), and a high coulombic efficiency of over 99% even with a low amount of electrolyte are achieved. The alternative anodes do not suffer from electrolyte depletion, which is found to be the main cause of cell failure when using metallic lithium anodes.  相似文献   
999.
Biomarkers have become increasingly important for identifying the source of spilled oil, due to their specificity and high resistance to biodegradation. The biomarkers most commonly used in forensic investigations are the high molecular weight (MW) tri- and pentacyclic terpanes and steranes. For lighter petroleum products such as jet fuels and diesels, the refining processes remove most high MW biomarkers from the original crude oil feedstock. The smaller bicyclic sesquiterpanes, however, are concentrated in these products. Sesquiterpanes are ubiquitous components of crude oils and ancient sediments. Examination of GC-MS chromatograms of these bicyclic biomarkers using their characteristic fragment ions (m/z 123, 179, 193, and 207) provides a highly diagnostic means for identifying spilled oil, particularly for lighter refined product samples that are difficult to identify by current techniques. In this work, sesquiterpanes in crude oils and petroleum products are identified and characterized, distributions of sesquiterpanes in oils and refined products are compared, the effects of evaporative weathering on sesquiterpane distributions are examined, and a methodology using diagnostic indices of sesquiterpanes is developed for oil correlation and differentiation. Finally, two case studies are presented to illustrate the unique utility of sesquiterpanes for fingerprinting and identifying unknown diesel spills.  相似文献   
1000.
Quercetin, classified as a flavonoid, is a strong antioxidant that plays a significant role in the regulation of physiological processes in plants, which is particularly important in the case of biotic and abiotic stresses. The study investigated the effect of the use of potassium quercetin solutions in various concentrations (0.5%, 1.0%, 3.0% and 5.0%) on the physiological and biochemical properties of wheat seedlings. A pot experiment was carried out in order to determine the most beneficial dose of this flavonoid acting as a bio-stimulant for wheat plants. Spraying with quercetin derivative solutions was performed twice, and physiological measurements (chlorophyll content and fluorescence as well as gas exchange) were carried out on the first and seventh days after each application. The total phenolic compounds content and the total antioxidant capacity were also determined. It was shown that the concentrations of potassium quercetin applied have a stimulating effect on the course of physiological processes. In the case of most of the tested physiological parameters (chlorophyll content and fluorescence and gas exchange) and the total antioxidant capacity, no significant differences were observed in their increase as a result of application with concentrations of 3.0 and 5.0%. Therefore, the beneficial effect of quercetin on the analysed parameters is already observed when spraying with a concentration of 3.0%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号