首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5678篇
  免费   252篇
  国内免费   19篇
电工技术   60篇
综合类   17篇
化学工业   1287篇
金属工艺   272篇
机械仪表   107篇
建筑科学   116篇
矿业工程   10篇
能源动力   400篇
轻工业   373篇
水利工程   61篇
石油天然气   30篇
无线电   656篇
一般工业技术   1332篇
冶金工业   585篇
原子能技术   43篇
自动化技术   600篇
  2024年   18篇
  2023年   86篇
  2022年   158篇
  2021年   248篇
  2020年   163篇
  2019年   198篇
  2018年   247篇
  2017年   219篇
  2016年   203篇
  2015年   131篇
  2014年   220篇
  2013年   503篇
  2012年   268篇
  2011年   360篇
  2010年   223篇
  2009年   252篇
  2008年   238篇
  2007年   196篇
  2006年   163篇
  2005年   142篇
  2004年   116篇
  2003年   107篇
  2002年   90篇
  2001年   67篇
  2000年   78篇
  1999年   71篇
  1998年   110篇
  1997年   86篇
  1996年   94篇
  1995年   80篇
  1994年   74篇
  1993年   63篇
  1992年   59篇
  1991年   56篇
  1990年   41篇
  1989年   47篇
  1988年   50篇
  1987年   45篇
  1986年   34篇
  1985年   35篇
  1984年   41篇
  1983年   42篇
  1982年   44篇
  1981年   36篇
  1980年   29篇
  1979年   15篇
  1978年   11篇
  1976年   32篇
  1975年   13篇
  1973年   9篇
排序方式: 共有5949条查询结果,搜索用时 15 毫秒
81.
International Journal of Control, Automation and Systems - The system of multiple agents working in coordination for a given task has several advantages on faster completion, fault-tolerance, etc....  相似文献   
82.
The presence of alkali ions has reportedly improved the performance of CIGS/CZTS–based thin-film solar cells. The out-diffusion of the alkali ion, in particular, Na, from the glass substrate offers a facile scalable route of supplying the alkali ions during the growth of the absorber layer. In this work, we demonstrate the diffusion of different alkali ions (Li/Na/K) from composition tuned glasses with intentionally incorporated excess alkali ions into a thin Mo film, typically used as a bottom electrode in solar cells. We also evaluate the physical, mechanical, and thermal properties of the glasses for suitability as a substrate in thin-film deposition. The out-diffusion of alkali ions to the overlayer is found to be critically influenced by the composition and the local structure of the glasses. The Na ions exhibit the highest extent of diffusion among the alkali ions present in glass substrates, while that for the K-ions is the lowest. For the glasses with mixed alkali ions, the presence of Li facilitated the out-diffusion of Na, whereas K ions appear to inhibit the same. Differently with the existing reports, we show that the activation energy and the presence of Ca ions as additional modifiers play a crucial role in the transport mechanism of the ions. In addition, the synthesized glasses exhibit hardness of the order 5-7 GPa, density ~2.55 g cm-3. The glass transition temperature lies between 535 and 580°C and the coefficient of thermal expansion 8.5-10 ppm/K, which is highly suitable for use as substrates in thin-film solar cells.  相似文献   
83.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   
84.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   
85.
The study aims at investigating the mechanical behavior of carbon fiber reinforced polymer (CFRP) composites modified with graphene carboxyl at elevated temperature (ET-110°C) and understanding the effect of electrophoretic deposition bath concentration (0.5 g/L, 1.0 g/L, and 1.5 g/L) on their mechanical behavior at ET. The 1.5 g/L composite has revealed a maximum improvement in energy absorbed before failure of 33.25% at RT and 22.54% at ET for flexural testing and ∼35% at RT for short beam shear testing, over neat CFRP composite. The modified composites have shown an improved flexural strain to failure at both RT and ET, with 1.5 g/L composite exhibiting maximum enhancement of 12.41% at RT and 26.52% at ET over neat composite. However, at ET, modified composites exhibited lower flexural strength and interlaminar shear strength values in comparison to that of neat. Viscoelastic behavior of all composites was studied to understand bath concentration's effect on thermal behavior via dynamic mechanical thermal analysis. Differential scanning calorimetry was employed for governing the glass transition temperature of composites. Fractography of tested samples (both ET and RT) was performed utilizing a scanning electron microscope to determine the prominent failure mode.  相似文献   
86.
In this study, biobased polyester-ether polyols derived from meso-lactide and dimer acids were evaluated for flexible polyurethane foams (PUF) applications. Initially, the catalyst concentration was optimized for the biobased PUF containing 30% of biobased polyol (70% petroleum-based polyol). Then, the same formulation was used for biobased PUF synthesis containing 10%–40% of biobased polyols. The performance of biobased PUF was compared with the performance of the control foam made with 100% petroleum-based polyol. The characteristic times (cream, top of the cup, string gel, rise, tack-free) of biobased PUF were determined. The biobased PUF were evaluated for the mechanical (tensile and compressive) and morphological properties. As the wet compression set is important for automotive applications, it was measured for all biobased PUF. The thermal degradation behavior of biobased PUF was also evaluated and compared with the control foam. The effect of different hydroxyl and acid values of polyols on the mechanical properties of biobased PUF is also discussed. The miscibility of all components of PUF formulations is crucial in order to produce a foam with uniform properties. Thus, the miscibility of biobased polyols with commercial petroleum-based polyol was studied.  相似文献   
87.
Alumina-forming ODS superalloys are excellent oxidation-resistant materials. Their resistance relies upon the establishment of a stable, slow-growing, and adherent -alumina. In the present investigation, these alloys exhibited unstable and relatively less adherent -alumina phase, which increased the oxidation rate in the transient stage and converted into -alumina in the later part of the exposure. The oxide-growth process was found to depend upon various parameters such as temperature, time, and presence of an active elecment in the superalloy. Characterization carried out by XRD, SEM/EDAX, and AES on oxidized ODS and non-ODS alloys demonstrated a significant influence of the active element, Y, on the transformation of - to -alumina. SIMS analysis of two-stage oxidation at 900°C for two different durations evidently showed that the change in the transport process is due to -to--alumina transformation. On the basis of these results, a new and consistent mechanism is proposed to explain the influence of -alumina and its transformation on growth kinetics and the effect of yttrium on the transformation leading to good scale adherence and oxidation resistance.  相似文献   
88.
Heat flow at the casting/mold interface was assessed and studied during solidification of Al-Cu-Si (LM 21) alloy in preheated cast iron molds of two different thicknesses, coated with graphite and alumina based dressings. The casting and the mold were instrumented with thermocouples connected to a computer controlled temperature data acquisition system. The thermal history at nodal locations in the mold and casting obtained during experimentation was used to estimate the heat flux by solving the one-dimensional inverse heat conduction problem. The cooling rate and solidification time were measured using the computer-aided cooling curve analysis data. The estimated heat flux transients showed a peak due to the formation of a stable solid shell, which has a higher thermal conductivity compared with the liquid metal in contact with the mold wall prior to the occurrence of the peak. The high values of heat flux transients obtained with thin molds were attributed to mold distortion due to thermal stresses. For thin molds, assumption of Newtonian heating yielded reliable interfacial heat transfer coefficients as compared with one-dimensional inverse modeling. The time of occurrence of peak heat flux increased with a decrease in the mold wall thickness and increase in the casting thickness.  相似文献   
89.
The Session Initiation Protocol (SIP) is a signaling communications protocol, which has been chosen for controlling multimedia communication in 3G mobile networks. In recent years, password-based authenticated key exchange protocols are designed to provide strong authentication for SIP. In this paper, we address this problem in two-party setting where the user and server try to authenticate each other, and establish a session key using a shared password. We aim to propose a secure and anonymous authenticated key exchange protocol, which can achieve security and privacy goal without increasing computation and communication overhead. Through the analysis, we show that the proposed protocol is secure, and has computational and computational overheads comparable to related authentication protocols for SIP using elliptic curve cryptography. The proposed protocol is also provably secure in the random oracle model.  相似文献   
90.

In this paper, a novel pyramid coding based rate control scheme is proposed for video streaming applications constrained by a constant channel bandwidth. To achieve the target bit rate with the best quality, the initial quantization parameter (QP) is determined by the average spatio-temporal complexity of the sequence, its resolution and the target bit rate. Simple linear estimation models are then used to predict the number of bits that would be necessary to encode a frame for a given complexity and QP. The experimental results demonstrate that the proposed rate control scheme significantly outperforms the existing rate control scheme in the Joint Model (JM) reference software in terms of Peak Signal to Noise Ratio (PSNR) and consistent perceptual visual quality while achieving the target bit rate. Finally, the proposed scheme is validated through experimental evaluation over a miniature test-bed.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号