We quantify the ability of the two-fluid Euler–Euler model to predict the overall gas hold-up during two-phase flow in vertical columns using a combination of experiments and simulations. Gas hold-up in a bubble column and gas hold-up in the less-frequently studied co-current flow are investigated. For homogeneous flow characterized by nearly uniform bubble size, Euler–Euler model predictions are within 10% of the experimental values for both modes of operation, if the bubble diameter supplied as input to the model is the average bubble diameter in the physical system. This also holds true for heterogeneous flow in bubble columns despite the presence of a broad distribution of bubble sizes, if turbulence and bubble swarm effects on momentum exchange between phases are properly accounted for. Swarm corrections adequate for bubble columns, are less successful for co-current heterogeneous flow, for which gas hold-up predictions are least accurate (average error of 22%). 相似文献
This article aims to reduce the melting temperature of lead-free solder alloy and promote its mechanical properties. Eutectic tin-silver lead-free solder has a high melting temperature 221 °C used for electronic component soldering. This melting temperature, higher than that of lead–tin conventional eutectic solder, is about 183 °C. The effect of the melt spinning process and copper additions into eutectic Sn-Ag solder enhances the crystallite size to about 47.92 nm which leads to a decrease in the melting point to about 214.70 °C, where the reflow process for low heat-resistant components on print circuit boards needs lower melting point solder. The results showed the presence of intermetallic compound Ag3Sn formed in nano-scale at the Sn-3.5Ag alloy due to short time solidification. The presence of new intermetallic compound, IMC from Ag0.8Sn0.2 and Ag phase improves the mechanical properties, and then enhances the micro-creep resistance especially at Sn-3.5Ag-0.7Cu. The higher Young’s modulus of Sn-3.5Ag-0.5Cu alloy 55.356 GPa could be attributed to uniform distribution of eutectic phases. Disappearance of tin whiskers in most of the lead-free melt-spun alloys indicates reduction of the internal stresses. The stress exponent (n) values for all prepared alloys were from 4.6 to 5.9, this indicates to climb deformation mechanism. We recommend that the Sn95.7-Ag3.5-Cu0.7 alloy has suitable mechanical properties, low internal friction 0.069, low pasty range 21.7 °C and low melting point 214.70 °C suitable for step soldering applications. 相似文献
In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. 相似文献
Previously, we reported the identification of a thiazolidinedione‐based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N‐[4‐({3‐[(1‐methylcyclohexyl)methyl]‐2,4‐dioxothiazolidin‐5‐ylidene}methyl)phenyl]‐4‐nitro‐3‐(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial–mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK‐activating activities of individual derivatives revealed a distinct structure–activity relationship and identified 59 (N‐(3‐nitrophenyl)‐N′‐{4‐[(3‐{[3,5‐bis(trifluoromethyl)phenyl]methyl}‐2,4‐dioxothiazolidin‐5‐ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1 , compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT‐associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)‐null PC‐3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN‐negative cancer and warrants continued investigation in this regard. 相似文献
The formation of mineral scale particularly calcium carbonate is a problem for industries ranging from oil and gas to desalination plants. Various techniques have been studied to prevent the formation of scale. The use of chemical inhibitors to prevent calcium carbonate agglomeration is widely studied. The present study attempts to show that the inline monitoring technique is a useful tool for laboratory experimental investigation of agglomeration phenomenon. This method is successful in providing the induction time of starting agglomeration. It was shown that the presence of inhibitor delays the agglomeration and affects the deposition of calcium carbonate.In addition the method is found useful in determining the minimum inhibitor concentration and also to screen various types of inhibitors for the selection. The influence of an inhibitor is studied on scaling solution of various calcium ion concentrations. Finally, the result of inline technique was validated by comparing with the conventional one called offline technique. The SEM images reveal that the mechanism of inhibition might be the surface adsorption or distortion of inhibitor molecules on the growing calcium carbonate crystals. 相似文献
Wireless Personal Communications - In most scenarios of wireless sensor networks (WSNs), different traffic types have specific service requirements. None of the previous MAC schemes has been able... 相似文献
In this paper, the technique of dual-edge phase-alignment and its effects on ring oscillators are presented. This technique provides resetting of the built-up jitter at both rising and falling edges of a clean aligning signal named as the reference. Using signals and systems theory, the effect of the technique on the spurs due to the aligning reference signal is completely analyzed. We show that adding properly the dual-edge aligning feature to phase-aligned ring oscillators cause the spurs in the neighborhood of the carrier to disappear. First, the validity of the results obtained from the derived analytical equations is verified through simulations using MATLAB. Then a complete circuit considering realistic models for its components is simulated in TSMC RF CMOS 0.18um process using ADS for further validation. 相似文献
The reductive benzylation of aromatic and aliphatic aldehydes with benzylic halides is reported using a nickel/zinc catalyst system. In addition to benzylic halides, the first report on the addition of benzylic triflates, acetates, tosylates and tritylates to aldehydes is also presented. By this new method a range of alcohols was synthesized efficiently from aldehydes and benzylic substrates at room temperature in moderate to high yields. The mild reaction conditions and good functional group tolerance make this nickel‐catalyzed process synthetically useful for the synthesis of diverse benzylic alcohols.
In the present study, we are introducing silver-doped titanium oxide nanofibers produced by electrospinning technique. Calcination of dry nanofiber mats consisting of silver nitrate–titanium isopropoxide/PVAc in air at 600°C for 1 h leads to produce Ag-doped titania nanofibers. Two dyes have been invoked to check the photocatalytic ability of the produced nanofibers; methylene blue dihydrate and methyl red. The obtained results indicated that the silver-doped titanium oxide nanofibers can eliminate >92% of the methylene blue dye within 10 min only. In a case of methyl red, almost the dye was decayed (93%) within 3 h. 相似文献
In this article, we have developed a new protocol for the thioarylation of structurally diverse alkyl bromides such as benzyl, cinnamyl, n‐octyl, cyclohexyl, cyclopentyl, and tert‐butyl bromides with aryl iodides, bromides and an activated chloride using thiourea catalyzed by copper(I) iodide in wet polyethylene glycol (PEG 200) as an eco‐friendly medium in the presence of potassium carbonate at 80 and 100 °C under an inert atmosphere. The process is free from foul‐smelling thiols which makes this method more practical for the thioetherification of aryl halides. Another important feature of this method is the variety of alkyl bromides which are commercially available for the in situ generation of thiolate ions with respect to the existing protocols in which the less commercially available thiols are directly used for the preparation of arylthio ethers. 相似文献