首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   17篇
化学工业   51篇
金属工艺   4篇
机械仪表   4篇
建筑科学   15篇
能源动力   9篇
轻工业   45篇
水利工程   1篇
无线电   12篇
一般工业技术   22篇
冶金工业   3篇
自动化技术   13篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   11篇
  2019年   10篇
  2018年   18篇
  2017年   13篇
  2016年   12篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   9篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1973年   3篇
  1972年   1篇
  1968年   2篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
91.
In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4‐dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine‐modified hyaluronic acid (HA‐DN) prepared by carbodiimide chemistry is used to form thin and surface‐adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA‐DN to form polymeric coatings using the layer‐by‐layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.  相似文献   
92.
93.
94.
Several studies have shown the close relationship between the sodium consumption and health problems such as hypertension and cardiovascular disease. Thus, the demand for products with reduced sodium content, but with sensory quality, is increasing every day. In this context, this study aimed to optimize a low sodium salts mix using sodium chloride, potassium chloride, and monosodium glutamate to the development of shoestring potatoes with low sodium content and high sensory quality, through mixture design and response surface methodology. The salts mix that promotes the same salting power and similar sensory acceptability that the shoestring potatoes with 1.6% sodium chloride (ideal concentration) and at the same time promotes the greatest possible reduction of sodium, about 65%, should provide the composition as follows: 0.48% of sodium chloride, 0.92% of potassium chloride, and 0.43% of monosodium glutamate.  相似文献   
95.
The objectives of this work were to characterize the energy consumption and the heat transfer process by the determination of the convective heat transfer coefficient (h) of passion fruit pulp contained in high-density polyethylene (HDPE) boxes and frozen in two conditions: without and with airflow induction, which was achieved through the installation of obstacles. To determine the convective heat transfer coefficients, HDPE boxes containing passion fruit pulp (contained in polyethylene bags) were interspersed with boxes containing metal tanks filled with low freezing point solutions. Three types of solutions were used: ethylene glycol, propylene glycol, and ethanol. The airflow induction under the stacks of passion fruit pulp provided higher h values than without airflow induction. The calculated average values and standard deviation were 6.340?±?0.87 W/m2 °C, respectively, without airflow induction and 8.419?±?1.39 W/m2 °C with airflow induction. The average reduction of the freezing time was 25 % for the boxes located at the top and 20 % in the base of the stack. This proved that directing the airflow under the stacked product promoted more uniform and efficient heat transfer. The analysis of the electrical parameter measurements revealed an approximate decrease of 16.7 % in energy consumption due to the reduction of the freezing time, without compromising the quality and operation of the electrical system. This practice was shown to be viable for small producers and agribusinesses that desire reductions in processing time and energy consumption and, consequently, the overall cost of the final product.  相似文献   
96.
Grapes are known for their health benefits and high antioxidant activity due to phenolic content. Our work provides metabolic fingerprints of three grape products, namely grape juice (GJ), grape juice concentrate (GJC) and grape skin extract powder (GSE). Using direct infusion electrospray ionization mass spectrometry (ESI–MS) and evaluating the relationship between total lphenolic content and antioxidant activity, it is possible to compare which product has the best effectiveness. Fingerprints of GJC and GSE showed similar characteristic distributions of resveratrol and pterostilbene in relatively significant abundances. GJC provided higher antioxidant activity/phenolic ratio; therefore, the identified phenolic compounds from GJC may offer enhanced antioxidant potential when compared to the other two samples (GJ and GSE).  相似文献   
97.
Dynamic mechanical properties of a polyurethane (PU) elastomer and a mortar processed with the same elastomer (modified polytetramethylene ether glycol (PTMEG)) were studied. The results obtained showed that the liquid aromatic amine ETHACURE® 300, used as cure agent, can be used to substitute the aromatic amine MOCA®, which is usually used as cure agent in high performance elastomers. The resulting mortar produced with ETHACURE® 300 presents similar dynamic‐mechanical thermal properties when compared with MOCA ®. However, dynamic‐mechanical thermal analysis studies showed that the mortar developed with ETHACURE® 300 presents some advantages such as the low values of tan δ, indicating a good capacity of recovery of the strain after retreating an applied force. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
98.
99.
Objective: This study aimed to develop and validate an in vitro dissolution method based on in silico–in vivo data to determine whether an in vitroin vivo relationship could be established for rivaroxaban in immediate-release tablets.

Significance: Oral drugs with high permeability but poorly soluble in aqueous media, such as the anticoagulant rivaroxaban, have a major potential to reach a high level of in vitroin vivo relationship. Currently, there is no study on scientific literature approaching the development of RIV dissolution profile based on its in vivo performance.

Methods and results: Drug plasma concentration values were modeled using computer simulation with adjustment of pharmacokinetic properties. Those values were converted into drug fractions absorbed by the Wagner–Nelson deconvolution approach. Gradual and continuous dissolution of RIV tablets was obtained with a 30?rpm basket on 50?mM sodium acetate +0.2% SDS, pH 6.5 medium. Dissolution was conducted for up to 180?min. The fraction absorbed was plotted against the drug fraction dissolved, and a linear point-to-point regression (R2?=?0.9961) obtained.

Conclusion: The in vitro dissolution method designed promoted a more convenient dissolution profile of RIV tablets, whereas it suggests a better relationship with in vivo performance.  相似文献   
100.
Polymers have gained a remarkable place in the biomedical field as materials for the fabrication of various devices and for tissue engineering applications. The initial acceptance or rejection of an implantable device is dictated by the crosstalk of the material surface with the bioentities present in the physiological environment. Advances in microfabrication and nanotechnology offer new tools to investigate the complex signaling cascade induced by the components of the extracellular matrix and consequently allow cellular responses to be tailored through the mimicking of some elements of the signaling paths. Patterning methods and selective chemical modification schemes at different length scales can provide biocompatible surfaces that control cellular interactions on the micrometer and sub‐micrometer scales on which cells are organized. In this review, the potential of chemically and topographically structured micro‐ and nanopolymer surfaces are discussed in hopes of a better understanding of cell–biomaterial interactions, including the recent use of biomimetic approaches or stimuli‐responsive macromolecules. Additionally, the focus will be on how the knowledge obtained using these surfaces can be incorporated to design biocompatible materials for various biomedical applications, such as tissue engineering, implants, cell‐based biosensors, diagnostic systems, and basic cell biology. The review focusses on the research carried out during the last decade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号