首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   99篇
  国内免费   1篇
电工技术   12篇
化学工业   653篇
金属工艺   23篇
机械仪表   15篇
建筑科学   17篇
能源动力   24篇
轻工业   164篇
水利工程   3篇
石油天然气   9篇
无线电   36篇
一般工业技术   216篇
冶金工业   25篇
原子能技术   5篇
自动化技术   121篇
  2024年   5篇
  2023年   38篇
  2022年   197篇
  2021年   183篇
  2020年   51篇
  2019年   35篇
  2018年   46篇
  2017年   50篇
  2016年   60篇
  2015年   48篇
  2014年   82篇
  2013年   61篇
  2012年   73篇
  2011年   73篇
  2010年   39篇
  2009年   43篇
  2008年   57篇
  2007年   37篇
  2006年   33篇
  2005年   29篇
  2004年   20篇
  2003年   12篇
  2002年   13篇
  2001年   7篇
  2000年   7篇
  1999年   1篇
  1998年   7篇
  1997年   8篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
  1980年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有1323条查询结果,搜索用时 15 毫秒
971.
Agro‐food systems are undergoing rapid innovation in the world and the system's continuum is promoted at different scales with one of the main outcomes to improve nutrition of consumers. Consumer knowledge through educational outreach is important to food and nutrition security and consumer demands guide breeding efforts. Maize is an important part of food systems. It is a staple food and together with rice and wheat, they provide 60% of the world's caloric intake. In addition to being a major contributor to global food and nutrition security, maize forms an important part of the culinary culture in many areas of Africa, the Americas, and Asia. Maize genetics are being exploited to improve human nutrition with the ultimate outcome of improving overall health. By impacting the health of maize consumers, market opportunities will be opened for maize producers with unique genotypes. Although maize is a great source of macronutrients, it is also a source of many micronutrients and phytochemicals purported to confer health benefits. The process of biofortification through traditional plant breeding has increased the protein, provitamin A carotenoid, and zinc contents of maize. The objective of this paper is to review the innovations developed and promoted to improve the nutritional profiles of maize and outcomes of the maize agro‐food system.  相似文献   
972.
973.
Strong Lewis acid SnTf-MCM-41 and SnTf-UVM-7 catalysts with unimodal and bimodal pore systems were prepared in a two-step synthesis in which the triflic acid (OTf) was incorporated into previously synthesized mesoporous tin-containing silicas. The Sn incorporation inside the pore walls was carried out through the Atrane method. The SnTf-UVM-7 catalysts were prepared by aggregating nanometric mesoporous particles defining a hierarchic textural-type additional pore system. Catalysts with different Si/Sn ratios in the range 21.8–50.8 for SnTf-MCM-41 and 18.4 for SnTf-UVM-7 were found to be efficient catalysts for the etherification of primary alcohols to symmetrical long chain ethers and the selective etherification of ethylene glycol with 1-octanol to nonionic surfactants structures. The processes are green, environmentally safe, and heterogeneous.  相似文献   
974.
Providing optimal operating conditions is one of the major challenges for effective heating or cooling systems. Moreover, proper adjustment of the heat transfer fluid is also important from the viewpoint of the correct operation, maintenance, and cost efficiency of these systems. Therefore, in this paper, a detailed review of recent work on the subject of conventional and novel heat transfer fluid applications is presented. Particular attention is paid to the novel nanoparticle-based materials used as heat transfer fluids. In-depth comparison of environmental, technical, and economic characteristics is discussed. Thermophysical properties including thermal conductivity, specific heat, density, viscosity, and Prandtl number are compared. Furthermore, the possible benefits and limitations of various transfer fluids in the fields of application are taken into account.  相似文献   
975.
Hemolytic uremic syndrome (HUS) is defined by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury (AKI). Atypical HUS (aHUS), distinguished by its etiology, is caused by uncontrolled overactivation of the alternative complement pathway. The correct diagnosis of aHUS is complex and involves various gene mutations. Severe combined immunodeficiency (SCID), characterized by severe T-cell lymphocytopenia and a lack of antigen-specific T-cell and B-cell immune responses, is of seldom occurrence. In 10–15% of pediatric patients, SCID is caused by adenosine deaminase (ADA) deficiency. The authors describe the case of a boy who suffered from both aHUS and ADA-deficient SCID. At the age of 9 months, the patient presented acute kidney injury with anuria and coagulopathy. The diagnosis of aHUS was established on the basis of alternative complement pathway deregulation and disease-associated gene mutations. Further examination revealed immune system failure and, at the age of 13 months, the ADA deficiency was confirmed by genetic tests and the boy was diagnosed with ADA-SCID. ADA SCID has recently been described as a possible triggering factor of aHUS development and progression. However, more research is required in this field. Nevertheless, it is crucial in clinical practice to be aware of these two co-existing life-threatening diseases.  相似文献   
976.
Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.  相似文献   
977.
We report a lymphoma patient with profound B-cell deficiency after chemotherapy combined with anti-CD20 antibody successfully treated with remdesivir and convalescent plasma for prolonged SARS-CoV-2 infection. Viral clearance was likely attributed to the robust expansion and activation of TCR Vβ2 CD8+ cytotoxic T cells and CD16 + CD56- NK cells. This is the first presentation of TCR-specific T cell oligoclonal response in COVID-19. Our study suggests that B-cell depleted patients may effectively respond to anti-SARS-CoV-2 treatment when NK and antigen-specific Tc cell response is induced.  相似文献   
978.
Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype–genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome.  相似文献   
979.
In this paper, we describe the synthesis of multilayer nanoparticles as a platform for the diagnosis and treatment of ischemic injuries. The platform is based on magnetite (MNP) and silica (SNP) nanoparticles, while quinacrine is used as an anti-ischemic agent. The synthesis includes the surface modification of nanoparticles with (3-glycidyloxypropyl)trimethoxysilane (GPMS), the immobilization of quinacrine, and the formation of a chitosan coating, which is used to fix the fluorophore indocyanine green (ICG) and colloidal quantum dots AgInS2/ZnS (CQDs), which serve as secondary radiation sources. The potential theranostic platform was studied in laboratory animals.  相似文献   
980.
It is well established that homocysteine (Hcy) and its thiolactone (HTL) are reactive towards aldehydes in an aqueous environment, forming substituted thiazinane carboxylic acids. This report provides evidence that Hcy/HTL and formaldehyde (FA) adduct, namely 1,3-thiazinane-4-carboxylic acid (TCA) is formed in vivo in humans. In order to provide definitive proof, a gas chromatography–mass spectrometry (GC–MS) based method was elaborated to identify and quantify TCA in human urine. The GC–MS assay involves chemical derivatization with isobutyl chloroformate (IBCF) in the presence of pyridine as a catalyst, followed by an ethyl acetate extraction of the obtained isobutyl derivative of TCA (TCA-IBCF). The validity of the method has been demonstrated based upon United States Food and Drug Administration recommendations. The assay linearity was observed within a 1–50 µmol L−1 range for TCA in urine, while the lowest concentration on the calibration curve was recognized as the limit of quantification (LOQ). Importantly, the method was successfully applied to urine samples delivered by apparently healthy volunteers (n = 15). The GC–MS assay may provide a new analytical tool for routine clinical analysis of the role of TCA in living systems in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号