首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1261篇
  免费   83篇
  国内免费   1篇
电工技术   12篇
化学工业   654篇
金属工艺   23篇
机械仪表   15篇
建筑科学   18篇
能源动力   24篇
轻工业   166篇
水利工程   3篇
石油天然气   9篇
无线电   37篇
一般工业技术   218篇
冶金工业   40篇
原子能技术   5篇
自动化技术   121篇
  2024年   5篇
  2023年   38篇
  2022年   196篇
  2021年   185篇
  2020年   51篇
  2019年   36篇
  2018年   46篇
  2017年   50篇
  2016年   60篇
  2015年   48篇
  2014年   83篇
  2013年   61篇
  2012年   73篇
  2011年   75篇
  2010年   39篇
  2009年   45篇
  2008年   58篇
  2007年   38篇
  2006年   35篇
  2005年   30篇
  2004年   21篇
  2003年   15篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   1篇
  1998年   8篇
  1997年   9篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有1345条查询结果,搜索用时 15 毫秒
51.
Using the methods of infrared spectroscopy (IRS) and X-ray photoelectron spectroscopy (XPS), it was shown that short-term high-energy machining of detonation nanodiamonds (DND) leads to structural changes in the crystal structure and functional composition of the surface layer on particles. The possibility of spontaneous formation for stable colloidal systems with a narrow size distribution of mechanically activated DND in phenol-formaldehyde oligomers (PFO) was established. By molecular spectroscopy it was revealed that π → π* interactions of the aromatic rings of PFO are caused by orientational phenomena as a result of hydrogen bonds between an activated DND surface and functional groups of PFO. The effect of DND concentration on the curing reaction parameters ofpsgr the phenol-formaldehyde oligomer was determined by differential scanning calorimetry (DSC). The concentration effect of mechanically activated nanodiamonds on the physical and mechanical characteristics of a composite material based on phenol-formaldehyde binder and polyamide paper (Nomex) was studied. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48582.  相似文献   
52.
53.
Breast cancer is a leading cause of death among women in the USA. The efficacy of existing anticancer therapeutics can be improved by targeting them through conjugation with ligands binding to cellular receptors. Recently, we developed a novel drug targeting strategy based on the use of pre-selected cancer-specific 'fusion pVIII proteins' (fpVIII), as targeting ligands. To study the efficiency of this approach in animal models, we developed a panel of breast cancer cell-binding phages as a source of targeted fpVIIIs. Two landscape phage peptide libraries (8-mer f8/8 and 9-mer f8/9) were screened to isolate 132 phage variants that recognize breast carcinoma cells MCF-7 and ZR-75-1 and internalize into the cells. When tested for their interaction with the breast cancer cells in comparison with liver cancer cells HepG2, human mammary cells MCF-10A cells and serum, 16 of the phage probes selectively interacted with the breast cancer cells whereas 32 bound both breast and liver cancer cells. The most prominent cancer-specific phage DMPGTVLP, demonstrating sub-nanomolar Kd in interaction with target cells, was used for affinity chromatography of cellular membrane molecules to reveal its potential binding receptor. The isolated protein was identified by direct sequencing as cellular surface nucleolin. This conclusion was confirmed by inhibition of the phage-cell interaction with nucleolin antibodies. Other prominent phage binders VPTDTDYS, VEEGGYIAA, and DWRGDSMDS demonstrate consensus motifs common to previously identified cancer-specific peptides. Isolated phage proteins exhibit inherent binding specificity towards cancer cells, demonstrating the functional activity of the selected fused peptides. The selected phages, their peptide inserts and intact fusion proteins can serve as promising ligands for the development of targeted nanomedicines and their study in model mice with xenograft of human cells MCF-7 and ZR-75-1.  相似文献   
54.
Tropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions. Applying differential scanning calorimetry (DSC), molecular dynamics (MD), co-sedimentation, trypsin digestion, and in vitro motility assay, we characterized the properties of Tpm molecules with these substitutions. The A134L mutation prevented proteolysis of Tpm molecule by trypsin, and both substitutions increased the thermal stability of Tpm and its bending stiffness estimated from MD simulation. None of these mutations affected the primary binding of Tpm to F-actin; still, both of them increased the thermal stability of the actin-Tpm complex and maximal sliding velocity of regulated thin filaments in vitro at a saturating Ca2+ concentration. However, the mutations differently affected the Ca2+ sensitivity of the sliding velocity and pulling force produced by myosin heads. The data suggest that both regions of instability are essential for correct regulation and fine-tuning of Ca2+-dependent interaction of myosin heads with F-actin.  相似文献   
55.
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.  相似文献   
56.
Silicon - This paper presents the comparative analysis of the properties of highly dispersed silicas synthesized by pyrogenic and fluoride methods. Raw materials and synthesis conditions differ...  相似文献   
57.
Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification.  相似文献   
58.
Serine‐proteinase‐catalyzed peptide splicing was demonstrated in analogues of the trypsin inhibitor SFTI‐1: both single peptides and two‐peptide chains (C‐ and N‐terminal peptide chains linked by a disulfide bridge). In the second series, peptide splicing with catalytic amount of proteinase was observed only when formation of acyl–enzyme intermediate was preceded by hydrolysis of the substrate Lys–Ser peptide bond. Here we demonstrate that with an equimolar amount of the proteinase, splicing occurs in all the two‐peptide‐chain analogues. This conclusion was supported by high resolution crystal structures of selected analogues in complex with trypsin. We showed that the process followed a direct transpeptidation mechanism. Thus, the acyl–enzyme intermediate was formed and was immediately used for a new peptide bond formation; products associated with the hydrolysis of the acyl–enzyme were not observed. The peptide splicing was sequence‐ not structure‐specific.  相似文献   
59.
Fluidized bed catalytic combustion has proved to be very promising for industrial application. The milestone problem is development of support and catalyst with high mechanical and thermal stability. We have developed a new technology for production of alumina supports with desired spherical shape, texture and structure. Properties of spherical granules depend on the method of granulation and most attention has been paid to development and optimization of hydrocarbon-ammonia moulding to produce uniform alumina spheres. Optimization of high quality spheres production focused on study of effect of initial hydroxide properties and molding conditions on properties of final product. Modification of spherical alumina with oxides of Mg, La, Ce, and Si proved to be effective to substantially improve the mechanical and thermal stability. This effect is most pronounced when, pairs of these dopes are introduced simultaneously.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号