首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1373篇
  免费   69篇
  国内免费   2篇
电工技术   6篇
综合类   2篇
化学工业   458篇
金属工艺   17篇
机械仪表   18篇
建筑科学   72篇
矿业工程   2篇
能源动力   17篇
轻工业   287篇
水利工程   8篇
石油天然气   4篇
无线电   61篇
一般工业技术   194篇
冶金工业   104篇
原子能技术   13篇
自动化技术   181篇
  2024年   5篇
  2023年   13篇
  2022年   64篇
  2021年   67篇
  2020年   45篇
  2019年   33篇
  2018年   46篇
  2017年   41篇
  2016年   60篇
  2015年   40篇
  2014年   57篇
  2013年   101篇
  2012年   83篇
  2011年   91篇
  2010年   82篇
  2009年   84篇
  2008年   73篇
  2007年   70篇
  2006年   63篇
  2005年   53篇
  2004年   39篇
  2003年   25篇
  2002年   24篇
  2001年   17篇
  2000年   24篇
  1999年   16篇
  1998年   16篇
  1997年   17篇
  1996年   16篇
  1995年   13篇
  1994年   13篇
  1993年   11篇
  1992年   5篇
  1991年   5篇
  1990年   13篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1934年   3篇
排序方式: 共有1444条查询结果,搜索用时 0 毫秒
51.
The association between obesity, cancer and cardiovascular disease (CVD) has been demonstrated in animal and epidemiological studies. However, the specific role of visceral obesity on cancer and CVD remains unclear. Visceral adipose tissue (VAT) is a complex and metabolically active tissue, that can produce different adipokines and hormones, responsible for endocrine-metabolic comorbidities. This review explores the potential mechanisms related to VAT that may also be involved in cancer and CVD. In addition, we discuss the shared pharmacological treatments which may reduce the risk of both diseases. This review highlights that chronic inflammation, molecular aspects, metabolic syndrome, secretion of hormones and adiponectin associated to VAT may have synergistic effects and should be further studied in relation to cancer and CVD. Reductions in abdominal and visceral adiposity improve insulin sensitivity, lipid profile and cytokines, which consequently reduce the risk of CVD and some cancers. Several medications have shown to reduce visceral and/or subcutaneous fat. Further research is needed to investigate the pathophysiological mechanisms by which visceral obesity may cause both cancer and CVD. The role of visceral fat in cancer and CVD is an important area to advance. Public health policies to increase public awareness about VAT’s role and ways to manage or prevent it are needed.  相似文献   
52.
53.
The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC’s interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.  相似文献   
54.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
55.
A novel quadruple spinneret to produce dual-layer hollow fiber membranes by simultaneous spinning of two polymer solutions, using the dual precipitation bath technique is proposed. Hollow fibers aimed at gas separation processes were prepared in extrusion system specifically designed and built for this purpose. A polyurethane polymer was selected as the selective layer (outer-layer), while polyethersulfone was defined as the support (inner-layer). Activated carbon powder was added into the PU solution for further improvement of the transport properties. The hollow fibers showed good adhesion between the polymer layers and a defect-free selective layer. Representative results include a CO2/N2 selectivity of 43.  相似文献   
56.
Antimicrobial bio-sourced films based on poly(lactic acid) containing either carvacrol or allyl isothiocyanate (AITC) were prepared and their antimicrobial properties were assessed on Botrytis cinerea during storage and after a high pressure (HP) “pasteurisation-like” treatment (up to 800 MPa at ambient temperature). A dry process (extrusion + thermomoulding) was used to shape the material. The high temperature encountered during film processing dramatically decreased the carvacrol and AITC content in the film, leading to a less efficient antimicrobial activity. The use of β-cyclodextrin (β-CD) to encapsulate the active compounds before film processing proved to be efficient to protect the AITC against thermal degradation and to control its release from the films during its use. PLA-based films containing either AITC or β-CD encapsulated AITC showed a significant activity against B. cinerea. An effective combination between the antimicrobial activity of AITC-based films and the high pressure treatment was observed on a model food system (PDA) inoculated with N × 104 (N ~ 1–9) conidia of B. cinerea. An HP treatment of only 300 MPa associated with an antimicrobial PLA/β-CD system providing an initial quantity of active agents equivalent to 4 mg of AITC/L of air (i.e. almost 2 folds lower than the minimal inhibition concentration of the active packaging used alone, which was determined to be equal to 10 mg/L of air in the same conditions) was found more efficient (total inhibition of B. cinerea growth during 10 days) than an 800 MPa HP treatment used alone (increase of the lag phase growth of 3.3 days).

Industrial relevance

The consumer demand for “fresh like” product containing reduced amount of preservatives without compromising human and environmental safety needs the development of new preservation strategies. As a consequence, the concept of “hurdle technologies” has risen up. The combined effect of HP treatment and volatile antimicrobial packaging allowed the use of lower individual treatment intensities to inhibit B. cinerea growth. Combining such “hurdles” is of relevance in the context of development of low-cost and eco-friendly food technologies.  相似文献   
57.
The objective of this study was to evaluate the influence of pH on rheological and viscoelastic properties of solutions based on blends of type A (GeA) or type B (GeB) gelatin and chitosan (CH). Solutions of GeA, GeB, CH, GeA:CH, and GeB:CH were prepared in several pH (3.5–6.0) and analyzed for determination of zeta-potential. Rheological analyses (stationary and dynamic essays) were carried out with blends allowing to study the effect of pH on shear stress, apparent viscosity, loss (G”) and storage (G’) moduli, and angle phase (Tanδ). Zeta potential of all biopolymers decreased linearly as a function of pH. CH presented higher values, and GeB, the lowest one, being the only having negative values at pH > 5. Overall, the pH influenced the rheological and viscoelastic properties of the colloidal solutions: shear stress and apparent viscosity increased as a function of pH. Other assays were carried out at 3% and 5% strain, for GeA:CH and GeB:CH, respectively. In the sol domain, G’ and G” (1 Hz) increased linearly for GeA:CH. But for GeB:CH, they increased in two linear different regions: one function between pH 3.5 and 5.0 and another one between 5.0 and 6.0, being a more important effect was visible in this last domain probably due to the negative net charge of gelatin, above it pI. An effect in two domains was also visible for Tanδ, explained in the same manner as previously. The GeB:CH blends behaved like diluted solutions, and transition temperatures increased as a function of pH.  相似文献   
58.
This study evaluated the effect of chlorhexidine (CLX) in cavities prepared with either ultrasound-mounted CVDentUS diamond tips or conventional diamond burs on dentin bond strength after 24 h and 180 days. Forty-eight dentin surfaces from sound third molars were flattened and divided into four groups (n = 12), according to the type of cavity preparation (CVDentUS ultrasound tip or conventional diamond) and with or without 2% CLX (Consepsis) treatment. After application of the adhesive system (Clearfil SE Bond), microhybrid composite resin blocks (Charisma) were made on the dentin surface in increments. After 24 h, the specimens were sectioned into stick-shaped samples with an adhesive interface of approximately 1 mm2. From each tooth, half of the sticks were evaluated after 24 h of storage in distilled water and the other half after 180 days, using a universal testing machine. Three-way analysis of variance showed no significant triple interactions (p = 0.722) or double interactions between factors. Higher bond strength values were observed with the use of ultrasonic tips (p = 0.019), irrespective of whether or not CLX was applied in either time period. No difference in bond strength values was observed in terms of CLX application (p = 0.581). No significant difference in bond strength values was shown after storage for 24 h or 180 days (p = 0.302). In conclusion, the ultrasonic tips promoted greater bond strength to dentin, irrespective of whether or not CLX was applied, and storage time.  相似文献   
59.
GluN2B‐containing NMDA receptors are involved in many important physiological functions and play a pivotal role in mediating pain as well as in several neurodegenerative disorders. We aimed to develop fluorescent probes to target the GluN2B subunit selectively in order to allow better understanding of the relationships between receptor localisation and physiological importance. Ifenprodil, known as the GluNR2B antagonist of reference, was chosen as the template for the elaboration of probes. We had previously reported a fluorescein conjugate that was shown (by confocal microscopy imaging of DS‐red‐labelled cortical neurons) to bind specifically to GluN2B. To elaborate this probe, we explored the influence of both the nature and the attachment point of the spacer between the fluorophore and the parent compound, ifenprodil. We performed chemical modifications of ifenprodil at the benzylic position and on the phenol ring by introducing secondary amine or amide functions and evaluated alkyl chains from two to 20 bonds either including or not including secondary amide functions as spacers. The previously developed probe was found to display the greatest activity in the inhibition of NMDA‐induced Ca2+ influx by calcium imaging experiments on HEK293 cells transfected with the cDNA encoding for GluN1‐1A and GluN2B. Further investigations revealed that this probe had a neuroprotective effect equivalent to that of ifenprodil in a standard test for neurotoxicity. Despite effects of lesser amplitude with these probes relative to ifenprodil, we demonstrated that they displaced [3H]ifenprodil in mouse brain slices in a similar manner.  相似文献   
60.
A study was carried out to develop a kinetic model of the photocatalytic inactivation of Escherichia coli using different TiO2 catalysts. The model developed is based on a reaction scheme that involves effectively coupling mass‐transfer fluxes between bacteria and catalyst surface on one hand and bacterial degradation reaction on the other. The photocatalytic results were derived from experiments led in a batch reactor under both dark and Ultra Violet (UV) irradiation conditions. Using a reference catalyst, the robustness of the developed model was tested under solar conditions. The experimental data validated the model as successfully able to reproduce evolutions in the viable bacteria concentration in the range of parameters studied without any further adjustment of the kinetic parameters. The model was used to simulate the bacterial degradation kinetics under different working conditions to describe the partitioning of both bacterial adhesion and photocatalytic reaction in the solution to be treated © 2015 American Institute of Chemical Engineers AIChE J, 61: 2532–2542, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号