首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   35篇
  国内免费   4篇
电工技术   6篇
综合类   1篇
化学工业   88篇
金属工艺   5篇
机械仪表   14篇
建筑科学   13篇
能源动力   26篇
轻工业   12篇
水利工程   2篇
石油天然气   14篇
无线电   31篇
一般工业技术   68篇
冶金工业   7篇
原子能技术   2篇
自动化技术   45篇
  2024年   2篇
  2023年   3篇
  2022年   16篇
  2021年   17篇
  2020年   12篇
  2019年   26篇
  2018年   27篇
  2017年   31篇
  2016年   18篇
  2015年   13篇
  2014年   22篇
  2013年   34篇
  2012年   27篇
  2011年   26篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
21.
Modern rocking and stepping cores have been known as the efficient self‐centering earthquake‐resisting systems (SC‐ERSs). The current article proposes an approximate equivalent linear (EL) model for rapid estimation of the SC‐ERS displacement. An equivalent damping ratio and effective stiffness are formulated for flag‐shaped hysteresis of a fully SC‐ERS. The approximate EL model is first established using secant stiffness and Jacobsen's damping model. Nonlinear response history analyses are carried out to compare exact and approximated peak displacements. Findings reveal that EL analysis of the SC‐ERS based on Jacobsen's damping leads to underestimation of the maximum inelastic displacement. Accordingly, a new optimal damping formula is proposed using a genetic algorithm and nonlinear regression analyses. The improved EL model is validated by practical examples, and the results show acceptable accuracy in design‐level displacement estimation.  相似文献   
22.
23.
Joseph L  Zaib Q  Khan IA  Berge ND  Park YG  Saleh NB  Yoon Y 《Water research》2011,45(13):4056-4068
In this study, the adsorption of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) from landfill leachate onto single-walled carbon nanotubes (SWCNTs) was investigated. Different leachate solutions were prepared by altering the pH, ionic strength, and dissolved organic carbon (DOC) in the solutions to mimic the varying water conditions that occur in leachate during the various stages of waste decomposition. The youngest and oldest leachate solutions contained varying DOC and background chemistry and were represented by leachate Type A (pH = 5.0; DOC = 2500 mg/L; conductivity = 12,500 μS/cm; [Ca2+] = 1200 mg/L; [Mg2+] = 470 mg/L) and Type E (pH = 7.5; DOC = 250 mg/L; conductivity = 3250 μS/cm; [Ca2+] = 60 mg/L; [Mg2+] = 180 mg/L). These solutions were subsequently combined in different ratios to produce intermediate solutions, labeled B-D, to replicate time-dependent changes in leachate composition. Overall, a larger fraction of EE2 was removed as compared to BPA, consistent with its higher log KOW value. The total removal of BPA and EE2 decreased in older leachate solutions, with the adsorptive capacity of SWCNTs decreasing in the order of leachate Type A > Type B > Type C > Type D > Type E. An increase in the pH from 3.5 to 11 decreased the adsorption of BPA by 22% in young leachate and by 10% in old leachate. The changes in pH did not affect the adsorption of EE2 in the young leachate, but did reduce adsorption by 32% in the old leachate. Adjusting the ionic strength using Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+ resulted in a 12% increase in the adsorption of BPA and a 19% increase in the adsorption of EE2. DOC was revealed to be the most influential parameter in this study. In the presence of hydrophilic DOC, represented by glucose in this study, adsorption of the endocrine disrupting compounds (EDCs) onto the SWCNTs was not affected. In the absence of SWCNTs, hydrophobic DOC (i.e., humic acid) adsorbed 15-20% of BPA and EE2. However, when the humic acid and SWCNTs were both present, the overall adsorptive capacity of the SWCNTs was reduced. Hydrophobic (π-π electron donor-acceptor) interactions between the EDCs and the constituents in the leachate, as well as interactions between the SWCNTs and the EDCs, are proposed as potential adsorption mechanisms for BPA and EE2 onto SWCNTs.  相似文献   
24.
The probability of fluidization regimes at high temperature was determined experimentally by frequency domain analysis of pressure fluctuations. Fluidization regime probabilities were calculated for various gas velocities and temperatures. By increasing the temperature, larger bubbles became more stable which resulted in postponing transition from bubbling to turbulent fluidization. Results showed that the transition velocity from bubbling to turbulent increases by raising the temperature. A probability model was proposed and compared with experimental data indicating good accordance.  相似文献   
25.
In the present paper, the unsteady, viscous, incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method. A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique. Finally, the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations. The computational simulations were performed for different transverse gap ratios (1.5≤T/D≤4) in laminar (Re=100,200) and turbulent (Re=104) regimes, where T and D are the distance between the centers of cylinders and the diameter of cylinders, respectively. The Reynolds number is based on the diameter of cylinders,D. The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios. Generally, different flow patterns were observed as the gap ratio and Reynolds number varied. Accordingly, the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios.  相似文献   
26.
In present study, the effective penetration of radiofrequency (RF) induced gold decorated iron oxide nanoparticles (GS@IONPs) hyperthermia was investigated. The effective penetration depth of RF also the damage potency of hyperthermia was evaluated during histopathology observations which were done on the chicken breast tissue and hepatocellular carcinoma (HCC) models. The thermal damages are well‐ documented in our previous cellular study which was engaged with potency of RF hyperthermia in Epithelial adenocarcinoma (MCF‐7) and fibroblast (L‐929) cells deaths [1]. In recent work, PEGylated iron oxide nanoparticles (IONPs) were used as base platform for gold magnetic nanoparticles (GS@IONPs) formation. The 144.00015 MHz, 180W RF generator was applied for stimulating the nanoparticles. The chicken breast tissue and the hepatocellular tumor model was considered in the experimental section. In histology studies, the structural changes also the effective penetration depth of RF induced nanoparticles was observed through microscopic monitoring of the tissue slices in histology observations (Gazi medical school). The highest damage level was seen in 8.0 µm tissue slices where lower damages were seen in depth of 1.0 cm and more inside tissue. The histology observations clarified the effective penetration depth of RF waves and irreversible damages in the 2.0 cm inside the tissue.Inspec keywords: nanomedicine, tumours, biomedical materials, cellular biophysics, nanoparticles, gold, cancer, hyperthermia, magnetic particles, iron compounds, radiation therapyOther keywords: Au‐Fe3 O4 , depth 1.0 cm, depth 8.0 mum, power 180.0 W, size 2.0 cm, frequency 144.00015 MHz, microscopic monitoring, structural changes, hepatocellular tumour model, standing wave ratio, propylene glycol, thermal damages, hepatocellular carcinoma models, radiofrequency hyperthermia, nanoparticle dispersion, tissue alterations, modified tissues, gold shell magnetic nanoparticles, chicken breast tissue, gold‐coated iron oxide nanoparticles, pathology observations, effective penetration depth, histology observations, tissue slices  相似文献   
27.
We develop a fuzzy multi-objective linear programming (FMOLP) model for solving multi-objective mixed-model assembly line problem. In practice, vagueness and imprecision of the goals in this problem make the fuzzy decision-making complicated. The proposed model considers minimizing total utility work, total production rate variation, and total setup cost, using a two-phase linear programming approach. In the first phase, the problem is solved using a max–min approach. The max–min solution not being efficient, in general, we propose a new model in the second phase to maximize a composite satisfaction degree at least as good as the degrees obtained by phase one. To show the effectiveness of the proposed approach, a numerical example is solved and the results are compared with the ones obtained by the fuzzy mixed integer goal programming and weighted additive methods. The computational results show that the proposed FMOLP model achieves lower objective functions as well as higher satisfaction degrees.  相似文献   
28.
Effect of temperature on the hydrodynamics of bubbling gas–solid fluidized beds was investigated in this work. Experiments were carried out at different temperatures ranged of 25–600°C and different superficial gas velocities in the range of 0.17–0.78 m/s with sand particles. The time‐position trajectory of particles was obtained by the radioactive particle tracking technique at elevated temperature. These data were used for determination of some hydrodynamic parameters (mean velocity of upward and downward‐moving particles, jump frequency, cycle frequency, and axial/radial diffusivities) which are representative to solids mixing through the bed. It was shown that solids mixing and diffusivity of particles increases by increasing temperature up to around 300°C. However, these parameters decrease by further increasing the temperature to higher than 300°C. This could be attributed to the properties of bubble and emulsion phases. Results of this study indicated that the bubbles grow up to a maximum diameter by increasing the temperature up to 300°C, after which the bubbles become smaller. The results showed that due to the wall effect, there is no significant change in the mean velocity of downward‐moving clusters. In order to explain these trends, surface tension of emulsion between the rising bubble and the emulsion phase was introduced and evaluated in the bubbling fluidized bed. The results showed that surface tension between bubble and emulsion is increased by increasing temperature up to 300°C, however, after that it acts in oppositely.  相似文献   
29.
This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials, which have a higher density than conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The in-plane speed of propagation of the reaction was experimentally determined using a time of- flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with a thickness greater than 1 μm. Different substrate materials such as glass and photoresist were also used.  相似文献   
30.
A new model with comprehensive kinetics for propylene homopolymerization in fluidized bed reactors was developed to investigate the effect of mixing, operating conditions, kinetic and hydrodynamic parameters on the reactor performance as well as polymer properties. Presence of the particles in the bubbles and the excess gas in the emulsion phase was considered to improve the two-phase model, thus, considering the polymerization reaction to take place in both the bubble and emulsion phases. It was shown that in the practical range of superficial gas velocity and catalyst feed rate, the ratio of produced polymer in the bubble phase to the total production rate is roughly between 10% and 13%, which is a substantial amount and cannot be ignored. Simulation studies were carried out to compare the results of the improved two-phase, conventional well-mixed and constant bubble size models. The improved two-phase and well mixed models predicted a narrower and safer window at the same running conditions compared with the constant bubble size model. The improved two-phase model showed close dynamic behavior to the conventional models at the beginning of polymerization, but starts to diverge with the evolution of time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号