全文获取类型
收费全文 | 131篇 |
免费 | 5篇 |
专业分类
化学工业 | 27篇 |
机械仪表 | 8篇 |
建筑科学 | 1篇 |
能源动力 | 3篇 |
轻工业 | 31篇 |
水利工程 | 1篇 |
无线电 | 9篇 |
一般工业技术 | 30篇 |
冶金工业 | 4篇 |
原子能技术 | 1篇 |
自动化技术 | 21篇 |
出版年
2024年 | 2篇 |
2023年 | 2篇 |
2022年 | 8篇 |
2021年 | 9篇 |
2020年 | 7篇 |
2019年 | 7篇 |
2018年 | 9篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 2篇 |
2014年 | 7篇 |
2013年 | 8篇 |
2012年 | 8篇 |
2011年 | 10篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 6篇 |
2007年 | 5篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2003年 | 2篇 |
2002年 | 2篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1989年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1978年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有136条查询结果,搜索用时 15 毫秒
91.
Using Vainberg's theorem of nonlinear potential operators, alternate potential principles associated with the differential equations governing the gasdynamics of plane steady irrotational diabatic flow and isoenergetic rotational adiabatic flow are formulated and their equivalence with Bateman's principle is established. Further, the advantage usefulness of treating a single nonlinear equation for the existence and hence formulation of a functional over the equivalent system for the same problem is brought into sharper focus. 相似文献
92.
93.
Neelam Gulia Vandana Dhaka B. S. Khatkar 《Critical reviews in food science and nutrition》2014,54(10):1386-1399
Noodles are one of the staple foods consumed in many Asian countries. Instant noodles have become internationally recognized food, and worldwide consumption is on the rise. The properties of instant noodles like taste, nutrition, convenience, safety, longer shelf-life, and reasonable price have made them popular. Quality factors important for instant noodles are color, flavor, and texture, cooking quality, rehydration rates during final preparation, and the presence or absence of rancid taste after extended storage. Microstructure of dough and noodles has been studied to understand the influence of ingredients and processing variables on the noodle quality by employing scanning electron microscopy. Applications of newer techniques like confocal laser scanning microscopy and epifluorescence light microscopy employed to understand the microstructure changes in dough and noodles have also been discussed. Sincere efforts of researchers are underway to improve the formulation, extend the shelf life, and promote universal fortification of instant noodles. Accordingly, many researchers are exploring the potential of noodle fortification as an effective public health intervention and improve its nutritional properties. This review focuses on the functionality of ingredients, unit operations involved, quality criteria for evaluation, recent trends in fortification, and current knowledge in relation to instant noodles. 相似文献
94.
95.
Neelam Ara Korakot Nakkanong Wenhui Lv Jinghua Yang Zhongyuan Hu Mingfang Zhang 《International journal of molecular sciences》2013,14(12):24008-24028
The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2−) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration. 相似文献
96.
Neelam Jagtap Shubhangi B. Umbarkar Pierre Miquel Pascal Granger Mohan K. Dongare 《Applied catalysis. B, Environmental》2009,90(3-4):416-425
Ag/Al2O3 catalysts with 1 wt% SiO2 or TiO2 doping in alumina support have been prepared by wet impregnation method and tested for sulphur tolerance during the selective catalytic reduction (SCR) of NOx using propene under lean conditions. Ag/Al2O3 showed 44% NOx conversion at 623 K, which was drastically reduced to 21% when exposed to 20 ppm SO2. When Al2O3 support in Ag/Al2O3 was doped with 1 wt% SiO2 or TiO2 the NOx conversion remained constant in presence of SO2 showing the improved sulphur tolerance of these catalysts. Subsequent water addition does not induce significant deactivation. On the contrary, a slight promotional effect on the activity of NO conversion to nitrogen is observed after Si and Ti incorporation. FTIR study showed the sulphation of silver and aluminum sites of Ag/Al2O3 catalysts resulting in the decrease in the formation of reactive intermediate species such as –NCO, which in turn decreases NOx conversion to N2. In the case of Ag/Al2O3 doped with SiO2 or TiO2, formation of silver sulphate and aluminum sulphate was drastically reduced, which was evident in FTIR resulting in remarkable improvement in the sulphur tolerance of Ag/Al2O3 catalyst. These catalysts before and after the reaction have been characterized with various techniques (XRD, BET surface area, transmittance FTIR and pyridine adsorption) for physico-chemical properties. 相似文献
97.
I. Banerjee Neelam Kumari Mukesh Kumar A.B. Panda P.K. Barhai 《Thin solid films》2010,518(24):7240-7244
Nano structured carbon nitride thin films were deposited at different RF powers in the range of 50 W to 225 W and constant gas ratio of (argon: nitrogen) Ar:N2 by RF magnetron sputtering. The atomic percentage of Nitrogen: Carbon (N/C) content and impedance of the films increased from 14.36% to 22.31% and 9 × 10−1 Ω to 7 × 105 Ω respectively with increase in RF power. The hardness of the deposited films increased from 3.12 GPa to 13.12 GPa. The increase in sp3 hybridized C-N sites and decrease of grain size with increase in RF power is responsible for such variation of observed mechanical and electrical properties. 相似文献
98.
For the first time, the studies on 2 to 10 at.% neodymium (Nd3+) ion doped Yttrium Aluminum Garnet (Nd:YAG) nanopowders obtained by microwave assisted citrate nitrate gel combustion synthesis is described in this work. This paper reports on high doping of Nd3+ ions with retaining the cubic garnet structure of YAG as evidenced from XRD, except the case of 8 at.% doped Nd:YAG. Phase pure YAG formation with 8 at.% Nd3+ doping was explored by using urea and alanine as alternative to citric acid complexing agents. Complete crystallization of YAG as a result of 2 hour thermal treatment at 900 °C under oxygen supply was studied by using Fourier Transform Infra-Red Spectroscopy (FTIR) and X-Ray Diffraction (XRD) techniques. With an increase in the dopant concentration a red shift in the FTIR peaks was observed. Using the XRD data, the cell parameter of Nd3+ (2 to 6 and 10 at.%) YAG was found to increase with an increase in the dopant concentration. The average primary particle size calculated using Scherrer’s equation was ~25 nm which was additionally supported by Transmission Electron Microscopy (TEM) results yielding particle sizes in the range of ~25 to 30 nm for all the cases. 相似文献
99.
Amit R. Hood Neelam Saurakhiya Dinesh Deva Ashutosh Sharma Nishith Verma 《Materials science & engineering. C, Materials for biological applications》2013,33(7):4313-4322
This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. 相似文献
100.