首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  国内免费   1篇
化学工业   6篇
金属工艺   18篇
一般工业技术   11篇
自动化技术   1篇
  2021年   2篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2005年   4篇
  2002年   2篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
21.
22.
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam–physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat–bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.  相似文献   
23.
Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria–yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.  相似文献   
24.
25.
Low Thermal Conductivity Coatings for Gas Turbine Applications   总被引:1,自引:0,他引:1  
Plasma spraying of thermal barrier coatings (TBCs) on gas turbine parts is widely used today either to enable higher-turbine inlet temperatures with consequent improvement of combustion efficiency or to reduce the requirements for the cooling system and increase component life-time. Development of low conductivity TBCs, which allows us to further increase gas turbine efficiency and availability, is an ongoing challenge. In order to get low thermal conductivity values an experimental program was conducted. Yttria partially stabilized zirconia (YPSZ) and dysprosia partially stabilized zirconia (DyPSZ) were used to study the influence of power input in the plasma torch and powder feed rate on coating properties. Microstructure evaluations were performed to evaluate the influence of the spraying parameters on the coating morphology and porosity level. Laser Flash (LF) and Transient Plane Source (TPS) methods were utilized to evaluate the coatings thermal conductivity and a comparison between the two methods conducted as well as a correlation study between coating microstructure/composition and thermal conductivity (TC).  相似文献   
26.
Efficiency of a gas turbine can be increased by increasing the operating temperature. Yttria‐stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used in gas turbine applications. However, above 1200°C, YSZ undergoes significant sintering and CMAS (calcium magnesium alumino silicate) infiltration. New ceramic materials of rare earth zirconate composition such as gadolinium zirconate (GZ) are promising candidates for thermal barrier coating applications (TBC) above 1200°C. Suspension plasma spray of single‐layer YSZ, double‐layer GZ/YSZ, and a triple‐layer TBC comprising denser GZ on top of GZ/YSZ TBC was attempted. The overall coating thickness in all three TBCs was kept the same. Isothermal oxidation performance of the three TBCs along with bare substrate and bond‐coated substrate was investigated for time intervals of 10 h, 50 h, and 100 h at 1150°C in air environment. Weight gain/loss analysis was carried out by sensitive weighing balance. Microstructural analysis was carried out using scanning electron microscopy (SEM). As‐sprayed single‐layer YSZ and double‐layer GZ/YSZ showed columnar microstructure, whereas the denser layer in the triple‐layer TBC was not columnar. Phase analysis of the top surface of as‐sprayed TBCs was carried out using XRD. Porosity measurements were made by water intrusion method. In the weight gain analysis and SEM analysis, multilayered TBCs showed lower weight gain and lower TGO thickness compared to single‐layer YSZ.  相似文献   
27.
Isothermal oxidation behavior of an HVAF-sprayed NiCoCrAlY coating on AISI 304L was studied in an Ar–10 %H2–20 %H2O environment at 600 °C. Techniques such as BIB/SEM, EDS, and XRD were used to comprehensively characterize the coating and the coating/substrate interface to investigate the oxidation mechanisms. Results were also compared with those obtained from an uncoated AISI 304L substrate. The alumina-forming NiCoCrAlY coating was found to exhibit superior oxidation behavior due to the formation of a slow-growing and protective Al2O3 scale, while the chromia-forming bare 304L substrate lost its protective capability due to the formation of a duplex [Fe3O4 on (Fe,Cr)3O4 spinel oxide] corrosion product layer.  相似文献   
28.
Dysprosia-stabilized zirconia (DySZ) is a promising candidate to replace yttria-stabilized zirconia (YSZ) as a thermal barrier coating due to its lower inherent thermal conductivity. It is also suggested in studies that DySZ may show greater stability to high temperature phase changes compared to YSZ, possibly allowing for coatings with extended lifetimes. Separately, the impurity content of YSZ powders has been proven to influence high-temperature sintering behavior. By lowering the impurity oxides within the spray powder, a coating more resistant to sintering can be produced. This study presents both high purity and standard purity dysprosia and YSZ coatings and their performance after a long heat treatment. Coatings were produced using powder with the same morphology and grain size; only the dopant and impurity content were varied. Samples have been heat treated for exposure times up to 400 h at a temperature of 1150 °C. Samples were measured for thermal conductivity to plot the evolution of coating thermal properties with respect to exposure time. Thermal conductivity has been compared to microstructure analysis and porosity measurement to track structural changes. Phase analysis utilizing x-ray diffraction was used to determine differences in phase degradation of the coatings after heat treatment.  相似文献   
29.
The paper presents a theory of the flow of a viscous fluid in a falling cylinder viscometer. The velocity profile for the flow in infinite tube and finite tube are obtained in finite form. That allows us to determine quite easily the influence of various parameters involved on the fluid flow and on the motion of the cylinder. Also a formula written in finite form is obtained for the determination of the viscosity coefficient. All these formulae contain a term that can describe the influence of a magnetic field on the motion of the falling cylinder. A comparison of the viscosities determined according to the present theory and with a cone-plate viscometers show a good agreement.  相似文献   
30.
A large quantity of gold (approximately 10 tonnes yearly) is consumed, all over the world, just to decorate ceramic and glassware. Due to their advanced chemical stability gold films are used for different high technology applications. The technologies for obtaining the best “liquid bright gold” were intensively studied, but the quality of the decor coatings (films) were empirically assessed. We proposed a scientific investigation of the characteristics of gold films, deposited on ceramic substrates, from “liquid bright golds”. The composition of the film has been determined by EDS (Energy Dispersive X-ray Spectrometry). The distribution of the elements was determined at the surface of the film and in cross-section. The surface distribution of the elements was uniform. The diffusion process of the film into substrate and the migration of the substrate elements at the interface region and into the film have been highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号