首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  国内免费   1篇
化学工业   6篇
金属工艺   18篇
一般工业技术   11篇
自动化技术   1篇
  2021年   2篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2005年   4篇
  2002年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
A large quantity of gold (approximately 10 tonnes yearly) is consumed, all over the world, just to decorate ceramic and glassware. Due to their advanced chemical stability gold films are used for different high technology applications. The technologies for obtaining the best “liquid bright gold” were intensively studied, but the quality of the decor coatings (films) were empirically assessed. We proposed a scientific investigation of the characteristics of gold films, deposited on ceramic substrates, from “liquid bright golds”. The composition of the film has been determined by EDS (Energy Dispersive X-ray Spectrometry). The distribution of the elements was determined at the surface of the film and in cross-section. The surface distribution of the elements was uniform. The diffusion process of the film into substrate and the migration of the substrate elements at the interface region and into the film have been highlighted.  相似文献   
32.
Thermal barrier coating (TBCs) systems made of plasma sprayed zirconia are commonly used in gas turbine engines to lower metal components surface temperature and allow higher combustion temperature that results in higher fuel efficiency and environmentally cleaner emissions. Low thermal conductivity and long service life are the most important properties of these coatings. The objective of this work was to study the influence of a long-term heat treatment (i.e., 1200 °C/2000 h) on different characteristics of atmospheric plasma sprayed TBCs. Two zirconia feedstock materials were evaluated, namely, yttria partially stabilized zirconia and dysprosia partially stabilized zirconia. Several spray conditions were designed and employed to achieve different coating morphologies. Microstructure analyses revealed that the coating microstructure was significantly dependent on both operating conditions and heat treatment conditions. Significant changes in coatings porosity occurred during heat treatment. The lowest thermal conductivity was reached with the dysprosia partially stabilized zirconia material. Heat treatment affected TBCs adhesion strength as well.  相似文献   
33.
A hard, low-wear probe for contact-mode writing techniques, such as dip-pen nanolithography (DPN), was fabricated using ultrananocrystalline diamond (UNCD). Molding within anisotropically etched and oxidized pyramidal pits in silicon was used to obtain diamond tips with radii down to 30 nm through growth of UNCD films followed by selective etching of the silicon template substrate. The probes were monolithically integrated with diamond cantilevers and subsequently integrated into a chip body obtained by metal electroforming. The probes were characterized in terms of their mechanical properties, wear, and atomic force microscopy imaging capabilities. The developed probes performed exceptionally well in DPN molecular writing/imaging mode. Furthermore, the integration of UNCD films with appropriate substrates and the use of directed microfabrication techniques are particularly suitable for fabrication of one- and two-dimensional arrays of probes that can be used for massive parallel fabrication of nanostructures by the DPN method.  相似文献   
34.
The laser performances of the 1.06 microm (4)F(3/2) --> (4)I(11/2) four-level transition and of the 0.9 microm (4)F(3/2) --> I(9/2)4 quasi-three-level transition were investigated using multipass pumped Nd-based media in thin-disk geometry. When pumping at 0.81 microm into the (4)F(5/2) level, continuous-wave laser operation was obtained with powers in excess of 10 W at 1.06 microm, in the multiwatt region at 0.91 microm in Nd:YVO(4) and Nd:GdVO(4), and at 0.95 microm in Nd:YAG. Intracavity frequency-doubled Nd:YVO(4) thin-disk lasers with output powers of 6.4 W at 532 nm and of 1.6 W at 457 nm were realized at this pumping wavelength. The pumping at 0.88 microm, which is directed into the (4)F(3/2) emitting level, was also employed, and Nd:YVO(4) and Nd:GdVO(4) thin-disk lasers with ~9 W output power at 1.06 microm and visible laser radiation at 0.53 microm with output power in excess of 4 W were realized. Frequency-doubled Nd:vanadate thin-disk lasers with deep blue emission at 0.46 microm were obtained under pumping directly into the (4)F(3/2) emitting level.  相似文献   
35.
7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.  相似文献   
36.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号