首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2592篇
  免费   164篇
  国内免费   5篇
电工技术   37篇
综合类   1篇
化学工业   676篇
金属工艺   51篇
机械仪表   46篇
建筑科学   68篇
矿业工程   4篇
能源动力   90篇
轻工业   244篇
水利工程   21篇
石油天然气   2篇
无线电   231篇
一般工业技术   540篇
冶金工业   142篇
原子能技术   18篇
自动化技术   590篇
  2024年   5篇
  2023年   39篇
  2022年   83篇
  2021年   114篇
  2020年   85篇
  2019年   76篇
  2018年   80篇
  2017年   84篇
  2016年   108篇
  2015年   94篇
  2014年   123篇
  2013年   170篇
  2012年   204篇
  2011年   229篇
  2010年   171篇
  2009年   149篇
  2008年   153篇
  2007年   127篇
  2006年   127篇
  2005年   79篇
  2004年   72篇
  2003年   60篇
  2002年   42篇
  2001年   25篇
  2000年   20篇
  1999年   23篇
  1998年   44篇
  1997年   32篇
  1996年   16篇
  1995年   14篇
  1994年   15篇
  1993年   18篇
  1992年   5篇
  1991年   15篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1979年   6篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1931年   1篇
排序方式: 共有2761条查询结果,搜索用时 15 毫秒
31.
32.
Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.  相似文献   
33.
This paper presents a comparative study of susceptibility reduction techniques for electromagnetic interference (EMI) in digital integrated circuits (ICs). Both direct power injection (DPI) and very-fast transmission-line pulsing (VF-TLP) methods are used to inject interference into the substrate of a single test chip. This IC is built around six functionally identical cores, differing only by their EMI protection strategies (RC protection, isolated substrate, meshed power supply network) which were initially designed for low emission design rules. The ranking of three of these cores in terms of electromagnetic immunity is then compared with the one of their radiated emission, thanks to near-field scanning (NFS) measurements. This leads to the establishing of design guidelines for low EMI in digital ICs.  相似文献   
34.
35.
Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals. Dithiafulvene (DTF) is used as substituent group to the oligo(phenylene ethynylene) (OPE) molecular wires and different molecular structures based on OPE3 backbone (with linear to cruciform framework) are achieved, with viable molecular orbitals and HOMO–LUMO energy gaps. OPE3, OPE3–DTF, and OPE3–tetrathiafulvalene (TTF) can form good self‐assembled monolayers (SAMs) on Au substrates. Molecular heterojunctions based on these SAMs are investigated using conducting probe–atomic force microscopy with different tips (Ag, Au, and Pt) and Fermi levels. The calibrated conductance values follow the sequence OPE3–TTF > OPE3–DTF > OPE3 irrespective of the tip metal. Rectification properties (or diode behavior) are observed in case of the Ag tip for which the work function is furthest from the HOMO levels of the OPE3s. Quantum chemical calculations of the transmission qualitatively agree with the experimental data and reproduce the substituent effect of DTF. Zero‐bias conductance, and symmetric or asymmetric couplings to the electrodes are investigated. The results indicate that improved fidelity of molecular transport measurements may be achieved by systematic studies of homologues series of molecular wires applying several different metal electrodes.  相似文献   
36.
Imprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices.  相似文献   
37.
The antimicrobial equipment of materials is of great importance in medicine but also in daily life. A challenge is the antimicrobial modification of hydrophobic surfaces without increasing their low surface energy. This is particularly important for silicone‐based materials. Because most antimicrobial surface modifications render the materials more hydrophilic, methods are needed to achieve antimicrobial activity without changing the high water‐contact‐angle. This is achieved in the present work, where SiO2 nanoparticles are prepared and functionalized with 3‐(trimethoxysilyl)‐propyldimethyloctadecyl ammonium chloride (QAS) in a one‐pot synthesis. The modified nanoparticles are applied onto a silicone surface from suspension with no need of elaborate pretreatment. The resulting surface exhibits a Lotus‐Effect combined with contact‐active antimicrobial properties. The particle surfaces show self‐organizing micro‐ and nanostructures that afford a water‐contact angle of 144° and a hysteresis below 10°. The particles are self‐adhering on the silicone after solvent evaporation and resistant against immersion into and washing with water for at least 5 d. Thereby, the adhesion of the bacterial strain Staphylococcus aureus to these surfaces is reduced and the remaining bacterial cells are killed within 16 h. This is the first example of a Lotus‐Effect surface with intrinsic contact‐active antimicrobial properties.  相似文献   
38.
New methods for dynamic mosaicking   总被引:3,自引:0,他引:3  
This paper presents a new technique for the creation of a sequence of mosaic images from an original video shot. A mosaic image represents, on a single image, the scene background seen all over the sequence and its creation requires the estimation of the warping parameters and the use of a blending technique. The warping parameters permit one to represent each original image in the mosaic reference. An estimation method, based on a direct comparison between the current original image and the previously calculated mosaic is proposed. A new analytic minimization criterion is also designed to optimize the determination of the blending coefficient used for the update of the mosaic image with a new original image. This criterion is based on constraints related to the temporal variations of the background, the temporal delay and the resolution of the created mosaic images, while its minimization can be analytically performed. Finally, the proposed method is applied to the creation of new video sequences in which the camera point of view, the camera focal, or the image size are modified. This approach has been tested and validated on real video sequences with large camera motion.  相似文献   
39.
The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure in periodic hemodialysis. The objective of this paper is to carry out an individualized prediction of the EPO dosage to be administered to those patients. The high cost of this medication, its side-effects and the phenomenon of potential resistance which some individuals suffer all justify the need for a model which is capable of optimizing dosage individualization. A group of 110 patients and several patient factors were used to develop the models. The support vector regressor (SVR) is benchmarked with the classical multilayer perceptron (MLP) and the Autoregressive Conditional Heteroskedasticity (ARCH) model. We introduce a priori knowledge by relaxing or tightening the epsilon-insensitive region and the penalization parameter depending on the time period of the patients' follow-up. The so-called profile-dependent SVR (PD-SVR) improves results of the standard SVR method and the MLP. We perform sensitivity analysis on the MLP and inspect the distribution of the support vectors in the input and feature spaces in order to gain knowledge about the problem.  相似文献   
40.
The crystallization and electrical characterization of the semiconducting polymer poly(3‐hexylthiophene) (P3HT) on a single layer graphene sheet is reported. Grazing incidence X‐ray diffraction revealed that P3HT crystallizes with a mixture of face‐on and edge‐on lamellar orientations on graphene compared to mainly edge‐on on a silicon substrate. Moreover, whereas ultrathin (10 nm) P3HT films form well oriented face‐on and edge‐on lamellae, thicker (50 nm) films form a mosaic of lamellae oriented at different angles from the graphene substrate. This mosaic of crystallites with π–π stacking oriented homogeneously at various angles inside the film favors the creation of a continuous pathway of interconnected crystallites, and results in a strong enhancement in vertical charge transport and charge carrier mobility in the thicker P3HT film. These results provide a better understanding of polythiophene crystallization on graphene, and should help the design of more efficient graphene based organic devices by control of the crystallinity of the semiconducting film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号