首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6259篇
  免费   192篇
  国内免费   23篇
电工技术   84篇
综合类   8篇
化学工业   1224篇
金属工艺   201篇
机械仪表   181篇
建筑科学   130篇
矿业工程   7篇
能源动力   450篇
轻工业   571篇
水利工程   76篇
石油天然气   88篇
武器工业   2篇
无线电   686篇
一般工业技术   1323篇
冶金工业   769篇
原子能技术   61篇
自动化技术   613篇
  2023年   104篇
  2022年   207篇
  2021年   243篇
  2020年   221篇
  2019年   194篇
  2018年   292篇
  2017年   246篇
  2016年   231篇
  2015年   161篇
  2014年   227篇
  2013年   466篇
  2012年   249篇
  2011年   303篇
  2010年   225篇
  2009年   235篇
  2008年   225篇
  2007年   176篇
  2006年   168篇
  2005年   100篇
  2004年   86篇
  2003年   91篇
  2002年   75篇
  2001年   57篇
  2000年   72篇
  1999年   86篇
  1998年   219篇
  1997年   145篇
  1996年   127篇
  1995年   95篇
  1994年   81篇
  1993年   83篇
  1992年   62篇
  1991年   60篇
  1990年   49篇
  1989年   60篇
  1988年   46篇
  1987年   43篇
  1986年   52篇
  1985年   66篇
  1984年   48篇
  1983年   55篇
  1982年   57篇
  1981年   56篇
  1980年   50篇
  1979年   44篇
  1978年   26篇
  1977年   39篇
  1976年   46篇
  1974年   28篇
  1973年   23篇
排序方式: 共有6474条查询结果,搜索用时 0 毫秒
61.
This paper details the adaptation and implementation of a proposed hierarchical model to the reliability assessment of LED-based luminaires. An Edison base ? 6 in., compatible can, downlight ? LED replacement bulb, cooled by active synthetic jets, is used as the test vehicle. Based on the identified degradation mechanisms and the experimentally obtained degradation rate of the cooling device, the reduction in the heat sink enhancement factor, and thus the increase in the LED junction temperature, is determined as a function of time. The degradation mechanisms of the dual-function power electronics – providing constant power to the LEDs and to the drivers of a series of synthetic jets – are also analyzed and serve as the basis for a hybrid model which combines these two effects on the luminaire lifetime. The lifetime of a prototypical luminaire is predicted from LED lifetime data using the degradation analyses of the synthetic jet and power electronics.  相似文献   
62.
The major purpose of this paper is to find an alternative configuration that not only minimizes the limitations of single-gate (SG) MOSFETs but also provides the better replacement for future technology. In this paper, the electrical characteristics of SiGe double-gate N-MOSFET are demonstrated and compared with electrical characteristics of Si double-gate N-MOSFET. Furthermore, in this paper the electrical characteristics of Si double-gate N-MOSFET are demonstrated and compared with electrical characteristics of Si single-gate N-MOSFET. The simulations are carried out for the device at different operational voltages using Cogenda Visual TCAD tool. Moreover, we have designed its structure and studied both Id-Vg characteristics for different voltages namely 0.05, 0.1, 0.5, 0.8, 1 and 1.5 V and Id-Vd characteristics for different voltages namely 0.1, 0.5, 1 and 1.5 V at work functions 4.5, 4.6 and 4.8 eV for this structure. The performance parameters investigated in this paper are threshold voltage, DIBL, subthreshold slope, GIDL, volume inversion and MMCR.  相似文献   
63.
In wireless communications, both control information and payload (user-data) are concurrently transmitted and required to be successfully recovered. This paper focuses on block-level detection, which is applicable for detecting transmitted control information, particularly when this information is selected or chosen from a finite set of information that are known at both transmitting and receiving devices. Using an orthogonal frequency division multiplexing architecture, this paper investigates and evaluates the performance of a time-domain decision criterion in comparison with a form of Maximum Likelihood (ML) estimation method. Unlike the ML method, the proposed time-domain detection technique requires no channel estimation as it uses the correlation (in the time-domain) that exists between the received and the transmitted selective information as a means of detection. In comparison with the ML method, results show that the proposed method offers improved detection performance, particularly when the control information consists of at least 16. However, the implementation of the proposed method requires a slightly increased number of mathematical computations.  相似文献   
64.
We have investigated the structural and electrical characteristics of the Ag/n-TiO2/p-Si/Al heterostructure. Thin films of pure TiO2 were deposited on p-type silicon (100) by optimized pulsed laser ablation with a KrF-excimer laser in an oxygen-controlled environment. X-ray diffraction analysis showed the formation of crystalline TiO2 film having a tetragonal texture with a strong (210) plane as the preferred direction. High purity aluminium and silver metals were deposited to obtain ohmic contacts on p-Si and n-TiO2, respectively. The current–voltage (IV) characteristics of the fabricated heterostructure were studied by using thermionic emission diffusion mechanism over the temperature range of 80–300 K. Parameters such as barrier height and ideality factor were derived from the measured IV data of the heterostructure. The detailed analysis of IV measurements revealed good rectifying behavior in the inhomogeneous Ag/n-TiO2/p-Si(100)/Al heterostructure. The variations of barrier height and ideality factor with temperature and the non-linearity of the activation energy plot confirmed that barrier heights at the interface follow Gaussian distributions. The value of Richardson’s constant was found to be 6.73 × 105 Am?2 K?2, which is of the order of the theoretical value 3.2 × 105 Am?2 K?2. The capacitance–voltage (CV) measurements of the heterostructure were investigated as a function of temperature. The frequency dependence (Mott–Schottky plot) of the CV characteristics was also studied. These measurements indicate the occurrence of a built-in barrier and impurity concentration in TiO2 film. The optical studies were also performed using a UV–Vis spectrophotometer. The optical band gap energy of TiO2 films was found to be 3.60 eV.  相似文献   
65.
Two-dimensional, midwavelength infrared (MWIR) HgCdTe detector arrays have been fabricated using reactive ion etching (RIE). Detector-to-detector uniformity has been studied in the devices fabricated with CdTe- and ZnS-passivation layers. Mapping of the doping profile, passivant/HgCdTe interface electrical properties, and diode impedance-area product (R0Aj) in a two-dimensional array of diodes has been carried out. Temperature and perimeter/area dependence of the dark current are studied to identify the bulk and surface current components. Maximum R0Aj=2×107 Θcm2 was achieved in CdTe-passivated, 200×200 μm2 diode arrays. It demonstrates that CdTe-passivated, RIE-processed HgCdTe is a feasible technology.  相似文献   
66.
Printed image multiplexing based on the design of metasurfaces has attracted much interest in the past decade. Optical switching between different images displayed directly on the metasurface is performed by altering the parameters of the incident light such as polarization, wavelength, or incidence angle. When using white light, only two-image multiplexing is implemented with polarization switching. Such metasurfaces are made of nanostructures perfectly controlled individually, which provide high-resolution pixels but small images and involve long fabrication processes. Here, it is demonstrated that laser processing of nanocomposites offers a versatile low-cost, high-speed method with large area processing capabilities for controlling the statistical properties of random metasurfaces, allowing up to three-image multiplexing under white light illumination. By independently controlling absorption and interference effects, colors in reflection and transmission can be varied independently yielding two-image multiplexing under white light. Using anisotropy of plasmonic nanoparticles, a third image can be multiplexed and revealed through polarization changes. The design strategy, the fundamental properties, and the versatility of implementation of these laser-empowered random metasurfaces are discussed. The technique, applied on flexible substrate, can find applications in information encryption or functional switchable optical devices, and offers many advantages for visual security and anticounterfeiting.  相似文献   
67.
Network on chip (NoC) is the solution to solve the problem of larger system on chip and bus based communication system. NoC provides scalable, highly reliable and modular approach for on chip communication and related problems. The wireless communication technologies such as IEEE 802.15.4 Zigbee technology follow mesh, star and cluster tree topology. The paper focuses on the development of machine learning model for design and FPGA synthesis of mesh, ring and fat tree NoC for different cluster size (N = 2, 4, 8, 16, 32, 64, 128 and 256). The fat-tree based topologies incorporate more links near the root of the tree, in order to fulfill the requirement for higher communication demand closer to the root of the tree, as compared to its leafs. It is an indirect topology in which not all routers are identical in terms of number of ports connecting to other routers or elements in the network. The research article presents the use of machine learning techniques to predict the FPGA resource utilization for NoC in advance. The present study helps in NoC chip planning before designing the chip itself by taking into account known hardware design parameters, memory utilization and timing parameters such as minimum and maximum period, frequency support etc. The machine learning is carried out based on multiple linear regression, decision tree regression and random forest regression which estimate the accuracy of the design and good performance. The interprocess communication among nodes is verified using Virtex-5 FPGA, in which data flows in packets and can vary up to ‘n’ bit. The designs are developed in Xilinx ISE 14.2 and simulated in Modelsim 10.1b with the help of VHDL programming language. The developed model has been validated and has performed well on independent test data.  相似文献   
68.
The recent developments in collaborative search, acquisition, and tracking have hoisted the geographical barrier. The network between unmanned aerial vehicles (UAVs) and wireless sensor networks (WSNs) is one such collaboration, which comprises battery‐powered static sensor nodes that act as sources and sinks and UAVs that act as relays. This collaborative network presents with opportunities and advantages, but at the same time, configuration of such networks is an arduous task. The WSN nodes are characterized by constant depleting power. Their network itself requires constant management and reconfiguration. These requisites can be slaked through the formation of an efficient data dissemination algorithm, which acclimates according to the network state. Considering this, a data dissemination approach is presented in this paper, which constructs a virtual topology predicated on the charge of WSN nodes utilizing software‐defined networks (SDNs) through UAVs. The topology is constantly monitored and reconfigured when required. The aerial nodes are equipped with multiple‐input multiple‐output (MIMO) antennas in order to facilitate simultaneous communication with the ground nodes, the base station, and the SDN controller. An efficient sleep timer and backoff counter strategies are also utilized by the proposed approach. The SDN controller facilitates the topology formation and maintenance of a sleep timer and a backoff counter. The proposed model is compared with clustered hierarchical layouts and hexagonal cell layouts through the network simulations. The results suggest significant improvements in the proposed model for various metrics, such as lifetime, delay, latency, delivery ratio, and throughput in comparison with the existing solutions.  相似文献   
69.
SARS-CoV-2 and other respiratory viruses spread via aerosols generated by infected people. Face masks can limit transmission. However, widespread use of disposable masks consumes tremendous resources and generates waste. Here, a novel material for treating blown polypropylene filtration media used in medical-grade masks to impart antimicrobial activity is reported. To produce thin copper@ZIF-8 core-shell nanowires (Cu@ZIF-8 NWs), Cu NWs are stabilized using a pluronic F-127 block copolymer, followed by growth of ZIF-8 to obtain uniform core-shell structures. The Cu@ZIF-8 NWs are applied to filtration media by dip coating. Aerosol filtration efficiency decreases upon exposure to ethanol (solvent for dip-coating), but increases with addition of Cu@ZIF-8 NWs. Cu@ZIF-8 NWs shows enhanced antibacterial activity, compared to Cu NWs or ZIF-8 alone, against Streptococcus mutans and Escherichia coli. Antiviral activity against SARS-CoV-2 is assayed using virus-infected Vero E6 cells, demonstrating 55% inhibition of virus replication after 48 h by 1 µg of Cu@ZIF-8 NWs per well. Cu@ZIF-8 NWs’ cytotoxicity is tested against four cell lines, and their effect on inflammatory response in A549 cells is examined, demonstrating good biocompatibility. This low-cost, scalable synthesis and straightforward deposition of Cu@ZIF-8 NWs onto filter media has great potential to reduce disease transmission, resource consumption, and environmental impact of waste.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号