首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   14篇
  国内免费   1篇
电工技术   12篇
化学工业   131篇
金属工艺   5篇
机械仪表   4篇
建筑科学   24篇
能源动力   16篇
轻工业   65篇
石油天然气   3篇
无线电   56篇
一般工业技术   141篇
冶金工业   94篇
原子能技术   6篇
自动化技术   53篇
  2024年   3篇
  2023年   7篇
  2022年   36篇
  2021年   44篇
  2020年   19篇
  2019年   16篇
  2018年   14篇
  2017年   15篇
  2016年   9篇
  2015年   6篇
  2014年   11篇
  2013年   22篇
  2012年   16篇
  2011年   23篇
  2010年   14篇
  2009年   11篇
  2008年   14篇
  2007年   19篇
  2006年   17篇
  2005年   15篇
  2004年   12篇
  2003年   14篇
  2002年   12篇
  2001年   10篇
  2000年   15篇
  1999年   16篇
  1998年   33篇
  1997年   22篇
  1996年   20篇
  1995年   15篇
  1994年   10篇
  1993年   12篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1982年   4篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   2篇
排序方式: 共有610条查询结果,搜索用时 15 毫秒
81.
The electrorheological (ER) behavior of modified montmorillonite (MMT) suspensions in polydimethylsiloxane is studied. As established by rotational viscometry, the samples with a dispersed phase concentration from 1 to 8 wt % reveal viscous Newtonian behavior and dramatically change their properties to elastic when electric field is applied. The rheological characteristics of the suspensions over 0–7 kV mm−1 range of electric field strengths are also studied. Novel X-ray diffraction method is developed to evaluate the suspension of the filler in a siloxane medium and to calculate the degree of its exfoliation. The dependence of exfoliation degree, dielectric, and ER characteristics on the type of modifier in the MMT structure is considered. Based on the obtained data, a new model of system behavior with the various types of fillers is proposed and the prospects of utilizing MMT as a filler for ER fluids are demonstrated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47678.  相似文献   
82.
83.
Neutrophils are principal host innate immune cell responders to mastitis infections. Thus, therapies have been developed that target neutrophil expansion. This includes the neutrophil-stimulating cytokine granulocyte colony-stimulating factor (gCSF). Pegylated gCSF (PEG-gCSF; Imrestor, Elanco Animal Health, Greenfield, IN) has been shown to reduce the natural incidence of mastitis in periparturient cows in commercial settings and reduce severity of disease against experimental mastitis challenge. Pegylated gCSF stimulates neutrophil expansion but also induces changes in monocyte and lymphocyte circulating numbers, surface protein expression changes, or both. We hypothesized that PEG-gCSF modulates surface expression of monocytes and neutrophils and facilitates their migration to the mammary gland. We challenged 8 mid-lactation Holsteins with approximately 150 cfu of Staphylococcus aureus (Newbould 305) in a single quarter via intramammary infusion. All animals developed chronic infections as assessed by bacteria counts and somatic cell counts (SCC). Ten to 16 wk postchallenge, 4 of the animals were treated with 2 subcutaneous injections of PEG-gCSF 7 d apart. Complete blood counts, SCC, bacterial counts, milk yield, feed intake, neutrophils extracellular trap analysis, and flow cytometric analyses of milk and blood samples were performed at indicated time points for 14 d after the first PEG-gCSF injection. The PEG-gCSF-treated cows had significantly increased numbers of blood neutrophils and lymphocytes compared with control cows. Flow cytometric analyses revealed increased surface expression of myeloperoxidase (MPO) on neutrophils and macrophages in milk but not in blood of treated cows. Neutrophils isolated from blood of PEG-gCSF-treated cows had decreased surface expression of CD62L (L-selectin) in blood, consistent with cell activation. Surprisingly, CD62L cell surface expression was increased on neutrophils and macrophages sourced from milk from treated animals compared with cells isolated from controls. The PEG-gCSF-treated cows did not clear the S. aureus infection, nor did they significantly differ in SCC from controls. These findings provide evidence that PEG-gCSF therapy modifies cell surface expression of neutrophils and monocytes. However, although surface MPO+ cells accumulate in the mammary gland, the lack of bacterial control from these milk-derived cells suggests an incomplete role for PEG-gCSF treatment against chronic S. aureus infection and possibly chronic mammary infections in general.  相似文献   
84.
Synthesis of mono-crystalline Ga2O3 Nanorods was done by sol-gel transformation of gallium(III) isopropoxide (Ga(OPri)3). XRD studies were done to determine the planes and crystal structure of synthesized nanorods that showed the synthesis of β-Ga2O3(a). TEM studies of synthesized Ga2O3 confirmed the synthesis of monocrystalline β-Ga2O3 nanorods. To study the effect of precursor chemistry and to determine role of precursor structures on the crystal structure, phase and morphology of the Ga2O3, a new modified precursor complex was synthesized. The reaction of Ga(OPri)3 with N-phenylsalicylaldimine, [C6H4(OH)CH=N(C6H5)] in 1:1?M ratio yielded [{(H5C6)N?=?CH-C6H4O}Ga(OPri)2]. The newly synthesized complex was characterized by elemental analyses, molecular weight measurement, FT-IR and NMR (1H and 13C) spectral studies. Spectral studies of the modified complex suggest the presence of bi-dentate mode of attachment of Schiff's base in the solution state. Sol-gel transformations of [{(H5C6)N?=?CH-C6H4O}Ga(OPri)2] in organic medium, yielded γ-Ga2O3(b), as found by XRD studies. TEM image of the sample (a) revealed the formation of nano-rods of oxide with average diameter of ~100?nm whereas the TEM image of sample (b) showed presence of nano-sized particles of oxide with average particle size of 10?nm. Morphological and compositional studies of synthesized samples (a) and (b) were carried out using SEM and EDX. The method provides a possibility of large scale synthesis of dissimilar shaped and pure Ga2O3 nanoparticles.  相似文献   
85.
Recent years have witnessed considerable progress in the development of solar cells based on lead halide perovskite materials. However, their intrinsic instability remains a limitation. In this context, the interplay between the thermal degradation and the hydrophobicity of perovskite materials is investigated. To this end, the salt 1‐(4‐ethenylbenzyl)‐3‐(3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctylimidazolium iodide (ETI), is employed as an additive in hybrid perovskites, endowing the photoactive materials with high thermal stability and hydrophobicity. The ETI additive inhibits methylammonium (MA) permeation in methylammonium lead triiodide (MAPbI3) occurring due to intrinsic thermal degradation, by inhibiting out‐diffusion of the MA+ cation, preserving the pristine material and preventing decomposition. With this simple approach, high efficiency solar cells based on the unstable MAPbI3 perovskite are markedly stabilized under maximum power point tracking, leading to greater than twice the preserved efficiency after 700 h of continuous light illumination and heating (60 °C). These results suggest a strategy to tackle the intrinsic thermal decomposition of MAI, an essential component in all state‐of‐the‐art perovskite compositions.  相似文献   
86.
Metasurfaces are engineered nanostructured interfaces that extend the photonic behavior of natural materials, and they spur many breakthroughs in multiple fields, including quantum optics, optoelectronics, and biosensing. Recent advances in metasurface nanofabrication enable precise manipulation of light–matter interactions at subwavelength scales. However, current fabrication methods are costly and time-consuming and have a small active area with low reproducibility due to limitations in lithography, where sensing nanosized rare biotargets requires a wide active surface area for efficient binding and detection. Here, a plastic-templated tunable metasurface with a large active area and periodic metal–dielectric layers to excite plasmonic Fano resonance transitions providing multimodal and multiplex sensing of small biotargets, such as proteins and viruses, is introduced. The tunable Fano resonance feature of the metasurface is enabled via chemical etching steps to manage nanoperiodicity of the plastic template decorated with plasmonic layers and surrounding dielectric medium. This metasurface integrated with microfluidics further enhances the light–matter interactions over a wide sensing area, extending data collection from 3D to 4D by tracking real-time biomolecular binding events. Overall, this work resolves cost- and complexity-related large-scale fabrication challenges and improves multilayer sensitivity of detection in biosensing applications.  相似文献   
87.
Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.  相似文献   
88.
AIM: The presented study examines prospectively the efficiency of a dose concept for radioiodine therapy (RIT) adapted to the pretherapeutic 99mTc-pertechnetate thyroid uptake under suppression (TcTUs) in patients with multifocal (MFA) and disseminated (DISA) autonomy. This concept considers the total thyroid as target volume and uses target doses from 150 Gy to 300 Gy according to the TcTUs, which is as a measure for the "autonomous volume" of the thyroid. METHODS: The data of 75 patients (54 female, 21 male; age 71 +/- 9 years) with MFA of DISA were evaluated. RIT was performed on patients presenting with normal values for free triiodothyronine and thyroxine and endogenous suppression of the basal thyrotropin (TSH). The following target dose were used for a TcTUs of 1.5-2.5% 150 Gy, for 2.51-3.5% 200 Gy, for 3.51-4.5% 250 Gy, and for > 4.5% 300 Gy. The radiation dose to be administered was calculated using a modified Marinelli formula. The therapy was considered as successful. When the basal TSH was above 0.5 mU/l and autonomous areas had disappeared in thyroid scintigraphy or the TcTU was below 1.5%, respectively. The average follow-up period was 8 +/- 4 months. RESULTS: The success rates average to 92%. Only in one case a subsequent subclinical hypothyroidism and in a further case an immunogenic hyperthyroidism occurred. CONCLUSION: The presented data indicate that even patients with a marked autonomy (TcTUs > 3.5%) can thus expected to be cured by of a one time therapy with success rate of over 90% using the presented dose concept. The rate of early hypothyroidism can altogether be estimated as very low.  相似文献   
89.
We present a method to simulate fluid flow on evolving surfaces, e.g., an oil film on a water surface. Given an animated surface (e.g., extracted from a particle-based fluid simulation) in three-dimensional space, we add a second simulation on this base animation. In general, we solve a partial differential equation (PDE) on a level set surface obtained from the animated input surface. The properties of the input surface are transferred to a sparse volume data structure that is then used for the simulation. We introduce one-way coupling strategies from input properties to our simulation and we add conservation of mass and momentum to existing methods that solve a PDE in a narrow-band using the Closest Point Method. In this way, we efficiently compute high-resolution 2D simulations on coarse input surfaces. Our approach helps visual effects creators easily integrate a workflow to simulate material flow on evolving surfaces into their existing production pipeline.  相似文献   
90.
Wireless Personal Communications - Cognitive radio (CR) is a flexible wireless network that can solve the scarcity and underutilization problem of the spectrum by permitting unlicensed users to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号