In this study, an innovative in situ green strategy was applied to prepare bacterial cellulose/silver nanocomposites using green tea as a substrate for the fermentation of Acetobacter xylinum bacteria and a reducing agent for the in situ synthesis of silver nanoparticles. The samples were analyzed by different characterization tests including field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), UV–vis spectroscopy, atomic absorption spectroscopy, and ATR. The results indicated the excellent antibacterial activities with 100% bacterial reduction percentage and inhibition zones of 2.6 and 2.8 cm against S. aureus and E. coli, respectively. Moreover, water absorption percentage and vertical wicking measurements supported the hydrogel properties of the prepared bio-cellulose/silver nanocomposites. Finding of this research suggested the potential of the proposed green route for preparing antibacterial BC which can be regarded as a candidate for future wound healing applications. 相似文献
The membrane glycerolipids of four phototrophs that were isolated from an edaphic assemblage were determined by UPLC–MS after cultivation in a laboratory growth chamber. Identification was carried out by 18S and 16S rDNA sequencing. The algal species were Klebsormidium flaccidum (Charophyta), Oocystis sp. (Chlorophyta), and Haslea spicula (Bacillariophyta), and the cyanobacterium was Microcoleus vaginatus (Cyanobacteria). The glycerolipid profile of Oocystis sp. was dominated by monogalactosyldiacylglycerol (MGDG) species, with MGDG(18:3/16:4) accounting for 68.6%, whereas MGDG(18:3/16:3) was the most abundant glycerolipid in K. flaccidum (50.1%). A ratio of digalactosyldiacylglycerol (DGDG) species to MGDG species (DGDG/MGDG) was shown to be higher in K. flaccidum (0.26) than in Oocystis sp. (0.14). This ratio increased under high light (HL) as compared to low light (LL) in all the organisms, with its highest value being shown in cyanobacterium (0.38–0.58, LL−HL). High contents of eicosapentaenoic acid (EPA, C20:5) and hexadecenoic acid were observed in the glycerolipids of H. spicula. Similar Fourier transform infrared (FTIR) and Raman spectra were found for K. flaccidum and Oocystis sp. Specific bands at 1629.06 and 1582.78 cm−1 were shown by M. vaginatus in the Raman spectra. Conversely, specific bands in the FTIR spectrum were observed for H. spicula at 1143 and 1744 cm−1. The results of this study point out differences in the membrane lipid composition between species, which likely reflects their different morphology and evolutionary patterns. 相似文献
Co-Mg ferrites, (x?=?0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, 0?<?y?<?0.34 and 0?<?z?<?0.67), were synthesized via a standard ceramic route, and the structural, morphological, magnetic properties and transmission parameter of the samples were studied. The thermal behavior of the ground powder was characterized using a differential thermal analysis technique (DTA). The XRD patterns proved the formation of single phase Mg-ferrite in the samples with "x" contents varying from 0.0 to 0.8. The sample with x?=?1.0 showed two phases: a spinel Mg-ferrite and a secondary (Co,Mg)O phase. The lattice parameter and crystallite size of the samples increased remarkably by increasing the x content. The SEM images revealed that Co substitution in Mg ferrite at x?=?0.2 causes the particle growth, but their growth was not significant until x?=?0.8. For x?=?1.0, a remarkable particle growth was again observed. A maximum bulk density of 4.94?g/cm3 was obtained for x?=?0.8. Magnetic properties of the sintered samples showed an increase in coercive force up to 113?Oe by increasing Co substitution up to x?=?1.0. Saturation magnetization reached a maximum value of ~45.40?emu/g at x?=?0.8. Studying the microwave transmission behavior of the samples, using a vector network analyzer (VNA), indicated that by increasing Co, the transmission loss was reduced from ??15?dB for x?=?0.0 to less than ??10?dB for x?=?0.8 in the frequency range of 8–12?GHz. 相似文献
International Journal of Fracture - Next-generation reactors are expected to play a crucial role in power production in the foreseeable future. Due to the extreme anticipated operating temperatures... 相似文献
This paper studies the error propagation effect that is caused by certain ambiguities in joint data detection-channel tracking algorithms for transmission diversity schemes. Here, we use a space-time (ST) receiver based on the maximum a posteriori (MAP) method that takes into account the channel estimation error assuming the unknown channel to have a given complex multivariate Gaussian probability density function (pdf) (i.e., a Ricean channel). The decision criterion that is expressed in quadratic form represents either a linear detector or a noncoherent-nonlinear detector in extreme cases. Then, the channel pdf for the next iteration is updated by estimates of the second-order statistics of the channel coefficients, and a very simple decision-directed adaptive algorithm is derived for adaptive channel estimation. The adaptive algorithm can efficiently track a fast Rayleigh fading channel and, as a result, achieves robust performance. However, the occurrence of two types of ambiguities initiated in deep fades result in error propagation. Some remedies called space-time ambiguity remedies (STARs) are proposed to prevent error propagation. A new time-varying space-time coding (TVST) scheme is suggested as a bandwidth-efficient method to combat the permutation ambiguity impairment. This coding scheme, in conjunction with a differential detector, can resolve the ambiguity problem. 相似文献
Sterilization capability of 2.45GHz Electron Cyclotron Resonance plasma system on silicone catheter is investigated for Ar and N2 gas discharges. E.coli, MRSA, Basillus cereus and Bacillus subtilis bacteria infected silicone catheter pieces are tested for sterilization. Basillus subtilis, which is a spore type bacteria, is determined as the most resistant one, and non spore type bacteria, Escherichia coli, is determined as the easiest one. The results show that nitrogen -N2 discharge has better sterilizing effects than Ar discharge by 15% less in time. Doubling the applied microwave source power decreases sterilization time scanty. Sterilization of silicone catheter is less than an hour for above bacteria types. Plasma discharge sterilization preserves the chemical integrity of polymer — based instruments. 相似文献
In this paper, we present an algorithm for the online identification and adaptive control of a class of continuous-time nonlinear systems via dynamic neural networks. The plant considered is an unknown multi-input/multi-output continuous-time higher order nonlinear system. The control scheme includes two parts: a dynamic neural network is employed to perform system identification and a controller based on the proposed dynamic neural network is developed to track a reference trajectory. Stability analysis for the identification and the tracking errors is performed by means of Lyapunov stability criterion. Finally, we illustrate the effectiveness of these methods by computer simulations of the Duffing chaotic system and one-link rigid robot manipulator. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for control of unknown continuous-time nonlinear systems with output disturbance noise. 相似文献
In this research, we aimed at improving the setting properties and biocompatibility of the mineral trioxide aggregate‐like cements while maintaining the main chemical formula. Consequently, chitosan and zirconium oxide were added to the cement instead of bismuth oxide to improve the mechanical behavior, limit the possible toxicity, and enhance the bioactivity of the cements. Adding zirconia resulted in a shorter setting time and adding chitosan contributed to the setting time, mechanical strength, and biocompatibility at the same time. Thus, cements containing both chitosan and zirconia had the shortest setting time, highest compressive strength, and apatite‐forming ability. 相似文献
Classification systems such as rock mass rating (RMR) are used to evaluate rock mass quality. This paper intended to evaluate RMR based on a fuzzy clustering algorithm to improve linguistic and empirical criteria for the RMR classification system. In the proposed algorithm, membership functions were first extracted for each RMR parameter based on the questionnaires filled out by experts. RMR clustering algorithm was determined by considering the percent importance of each parameter in the RMR classification system. In all implementation stages of the proposed algorithm, no empirical judgment was made in determining the classification classes in the RMR system. According to the obtained results, the proposed algorithm is a powerful tool to modify the rock mass rating system and can be generalized for future research.