In obesity, adipocyte hypertrophy and chronic inflammation in adipose tissues cause insulin resistance and type‐2 diabetes. Trigonella foenum‐graecum (fenugreek) can ameliorate hyperglycemia and diabetes. However, the effects of fenugreek on adipocyte size and inflammation in adipose tissues have not been demonstrated. In this study, we determined the effects of fenugreek on adipocyte size and inflammation in adipose tissues in diabetic obese KK‐Ay mice, and identified the active substance in fenugreek. Treatment of KK‐Ay mice with a high fat diet supplemented with 2% fenugreek ameliorated diabetes. Moreover, fenugreek miniaturized the adipocytes and increased the mRNA expression levels of differentiation‐related genes in adipose tissues. Fenugreek also inhibited macrophage infiltration into adipose tissues and decreased the mRNA expression levels of inflammatory genes. In addition, we identified diosgenin, a major aglycone of saponins in fenugreek to promote adipocyte differentiation and to inhibit expressions of several molecular candidates associated with inflammation in 3T3‐L1 cells. These results suggest that fenugreek ameliorated diabetes by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues, and its effects are mediated by diosgenin. Fenugreek containing diosgenin may be useful for ameliorating the glucose metabolic disorder associated with obesity. 相似文献
By combining state‐of‐the‐art microscopy, spectrosccopy, and first‐principles calculations, atomic‐scale intermixing behavior at heterointerfaces in SrTiO3‐based superlattices is investigated. It is found that Nb is confined to a unit‐cell thickness without intermixing, whereas Ba diffuses only to the adjoining Nb‐doped SrTiO3 layer. It is revealed that the intermixing behaviors at the heterointerfaces are determined by not only the migration energy, but also by the vacancy‐formation energy and the Fermi energy of each layer. Based on these results, we find a method to control the atomic‐scale intermixing at the nonpolar heterointerfaces and clearly demonstrate the property improvements obtained by constructing an abrupt heterointerface. 相似文献
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients. 相似文献
A concise route to 3‐aryl‐1‐trifluoromethyltetrahydroisoquinolines by a benzylic [1,5]‐hydride shift‐mediated C H bond functionalization was developed. The [1,5]‐hydride shift of the benzylic C(sp3) H bond to the trifluoromethylketimine derived from para‐anisidine occurred smoothly to produce cis‐1‐trifluoromethyl‐3‐aryltetrahydroisoquinolines in good to excellent chemical yields with good diastereoselectivities. In contrast, use of the N H ketimine furnished N‐unprotected tetrahydroisoquinolines in good yields in favor of the trans‐isomer.
A diagnostic system has been developed to obtain spatial and temporal profiles of shock front. A two-stage light-gas gun is used to accelerate impactors in velocity range with 4-9 km/s. The system consists of the Faraday-type electromagnetic sensors to measure impactor velocity, optical system with high-speed streak camera to measure shock-wave velocities, and the delay trigger system with self-adjustable pre-event pulse generator. We describe the specifications and performance of this system and data-analysis technique on the tilt and distortion of the shock front. Finally, we obtained the Hugoniot data of copper for system demonstration. 相似文献