首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2637篇
  免费   134篇
  国内免费   12篇
电工技术   35篇
综合类   14篇
化学工业   828篇
金属工艺   49篇
机械仪表   92篇
建筑科学   72篇
能源动力   173篇
轻工业   343篇
水利工程   33篇
石油天然气   21篇
无线电   248篇
一般工业技术   445篇
冶金工业   58篇
原子能技术   4篇
自动化技术   368篇
  2024年   9篇
  2023年   60篇
  2022年   139篇
  2021年   192篇
  2020年   129篇
  2019年   142篇
  2018年   166篇
  2017年   138篇
  2016年   156篇
  2015年   118篇
  2014年   160篇
  2013年   260篇
  2012年   212篇
  2011年   203篇
  2010年   130篇
  2009年   100篇
  2008年   58篇
  2007年   43篇
  2006年   32篇
  2005年   36篇
  2004年   25篇
  2003年   23篇
  2002年   23篇
  2001年   25篇
  2000年   17篇
  1999年   7篇
  1998年   19篇
  1997年   8篇
  1996年   14篇
  1995年   15篇
  1994年   17篇
  1993年   11篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   11篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1978年   3篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1973年   2篇
排序方式: 共有2783条查询结果,搜索用时 18 毫秒
61.
The growth of SiOx nanowires and nanocakes on an Au-coated n-type-Silicon (100) substrate was achieved via carbothermal evaporation. The effects of the Au layer thickness and the rapid heating rate on the morphology of obtained SiOx nanowires were investigated. A broad emission band from 290 to 600 nm was observed in the photoluminescence (PL) spectrum of these nanowires. There are four PL peaks: one blue emission peak 485 nm (2.56 eV) two green bands centered at 502 nm (2.47 eV) and 524 nm (2.37 eV) for nanocakes and one ultraviolet emission peak at 350 nm (3.54 eV) and a hemisphere curve over the bluish green area taken for SiOx nanowires. These emissions may be related to the various oxygen defects and twofold coordinated silicon lone pair centers.  相似文献   
62.
Poly(butylene succinate) (PBS) filled kenaf bast fiber (KBF) composites were fabricated via compression molding. The effects of KBF loading on the flexural and impact properties of the composites were investigated for fiber loadings of 10–40 wt %. The optimum flexural strength of the composites was achieved at 30 wt % fiber loading. However, the flexural modulus of the composites kept increasing with increasing fiber loading. Increasing the fiber loading led to a drop in the impact strength of about 57.5–73.6%; this was due to the stiff nature of the KBF. The effect of the fiber length (5, 10, 15, and 20 mm) on the flexural and impact properties was investigated for the 30 wt % KBF loaded composites. The composites with 10‐mm KBF showed the highest flexural and impact properties in comparison to the others. The inferior flexural and impact strength of the composites with 15‐ and 20‐mm KBF could be attributed to the relatively longer fibers that underwent fiber attrition during compounding, which consequently led to the deterioration of the fiber. This was proven by analyses of the fiber length, diameter, and aspect ratio. The addition of maleated PBS as a compatibilizer resulted in the enhancement of the composite's flexural and impact properties due to the formation of better fiber–matrix interfacial adhesion. This was proven by scanning electron microscopy observations of the composites' fracture surfaces. The removal of unreacted maleic anhydride and dicumyl peroxide residuals from the compatibilizers led to better fiber–matrix interfacial adhesion and a slightly enhanced composite strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
63.
The purpose of this research was to investigate the water absorption behavior and associated dimensional stability of kenaf‐polypropylene‐filled (PP/KF) composites. Composites with different fiber loadings, ranging from 0 to 40 wt %, were prepared with a twin‐screw extruder followed by hot press molding. The influence of the compatibilizer was also studied for PP/KF composite with 5 wt % maleated PP (MAPP). Water absorption testing was carried out at room temperature for 7 weeks. Tensile, flexural, and impact tests were also performed on control, wet, and re‐dried specimens. Increasing the fiber content resulted in higher water absorption and thickness swelling. The inferior mechanical properties of the wet composites were attributed to the effect of water, which deteriorates the interfacial properties of composites. On re‐drying, all properties were almost recovered because of the recovery of interfacial area as evident in scanning electron micrographs. Incorporation of the MAPP significantly improved the compatibility between the fiber and matrix and the mechanical properties of the composites compared with those without MAPP. It also diminished the water absorption as well as the related thickness swelling in the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
64.
This article is concerned with the static and dynamic mechanical properties of high‐density polyethylene (HDPE) reinforced with sawdust (SD) at a strain rate of up to 103 s?1. In this study, the static and dynamic properties of HDPE/SD composites with different filler loadings of 5, 10, 15, 20, and 30 wt% SD were deliberated at different levels of strain rates (0.001, 0.01, 0.1, 650, 900, and 1100 s?1) using a conventional universal testing machine and the split Hopkinson pressure bar apparatus. The results showed that the stress–strain curves, yield behavior, stiffness, and strength properties of the HDPE/SD composites were strongly affected by both the strain rate and the filler loadings. Furthermore, the rate sensitivityof the HDPE/SD composites showed a great dependency on the applied strain rate, increasing as the strain rate increased. However, the thermal activation values showed a contrary trend. Meanwhile, for the postdamage analysis, the results showed that the applied strain rates influenced the deformation behavior of the tested HDPE/SD composites. Moreover, for the fractographic analysis at dynamic loading, the composites showed that all the specimens underwent a severe catastrophic deformation. J. VINYL ADDIT. TECHNOL., 24:162–173, 2018. © 2016 Society of Plastics Engineers  相似文献   
65.
This work proposes an effective method for dispersion of zirconia suspension for dental block preparation and optimizes the cold isostatic pressing (CIP) pressure to improve the densification of slip-casted zirconia blocks. Two batches of 44 wt% zirconia suspension were prepared using distilled water in a pH 2 medium containing 0.5 wt% polyethyleneimine as dispersant. The first batch was sonicated for different durations (from 5 min to 30 min), and the second batch was dispersed through ball milling at rotational speeds of 200, 300, and 400 rpm for 60, 90, and 120 min. All suspensions were subjected to sedimentation test and particle size measurement. Results revealed that the optimum ultrasonication duration was 10 min, which yielded the smallest particle size of 133 nm. Ball milling at 300 rpm for 120 min achieved the maximum dispersion of particles, with an average size of 75 nm. Under the optimum conditions of ultrasonication duration, ball milling duration, and ball milling speed, the particle size decreased to 48 nm, which is close to the primary particle size. These dispersion techniques and parameters were selected for preparing a suspension to be consolidated into blocks through slip casting and were enhanced through CIP at pressure ranging from 100 MPa to 300 MPa. CIP compaction at 250 MPa significantly increased the shrinkage percentage of green zirconia blocks, with pore radius decreased to 18 nm. The density of zirconia pressed at 250 MPa and presintered at a low temperature of 950 °C was 59% of the theoretical density and was higher than that of commercial presintered blocks. Thus, CIP should be conducted under a compaction pressure of 250 MPa to produce dense and homogeneous zirconia blocks.  相似文献   
66.
Commercial availability of fatty acid methyl ester (FAME) from palm oil targeted for biodiesel offers a good feedstock for the production of structurally well‐defined polyols for polyurethane applications. The effect of molecular weight (MW), odd and even carbon numbers, and the linear and branched structure reactants used in the ring‐opening reaction of epoxidized fatty acid methyl ester (E‐FAME) on the properties of polyols was investigated. Conversions of E‐FAME to PolyFAME polyols were confirmed by Fourier transform infrared analysis, oxirane oxygen content, and hydroxyl number. Gel permeation chromatography (GPC) calibrated against polyether polyols as a standard and vapor pressure osmometry were used for MW determination. GPC chromatograms of PolyFAME polyols clearly demonstrated the formation of oligomers during ring‐opening reactions. MW, and odd and even carbon numbers in a structure of linear diols and branched diol used in the syntheses of PolyFAME polyols did not have an effect on crystallinity, glass transition, or melt temperatures measured using Differential scanning calorimetry (DSC). PolyFAME polyols ring‐opened with water, methanol, and 1,2‐propanediol contained secondary hydroxyl groups, whereas PolyFAME polyols ring‐opened with linear diols contained a mixture of primary and secondary hydroxyl groups. It was found that the concentration of primary hydroxyl groups increased significantly by increasing the number of carbons from C2 to C3 in the linear diols. The viscosity of PolyFAME polyols also increased with the MW of linear diols used in the E‐FAME ring‐opening reaction. These findings would be beneficial for formulators in choosing the most cost effective polyols for polyurethane formulations.  相似文献   
67.
BACKGROUND: Much attention has been given to applying ionic liquids (ILs) as an alternative pretreatment method for lignocellulosic biomass. This study aims to select the most suitable type of IL for pretreating sugarcane bagasse (SCB). The potential of ILs for pretreatment was evaluated and compared with conventional pretreatment media, acids and alkalis. The performance of the pretreatment media was evaluated based on the amount of reducing sugar produced from enzymatic saccharification, the energy requirement, and changes in the chemical structure and crystallinity index of the pretreated bagasse. RESULTS: 1‐ethyl‐3‐methylimidazolium acetate [EMIM]oAc was selected as the most suitable IL for SCB pretreatment. The optimum yields of reducing sugar obtained from [EMIM]oAc‐, alkali‐, and acid‐pretreated SCB were 69.5%, 92.8% and 41.3%, respectively. Although a lower yield of reducing sugar was obtained, [EMIM]oAc pretreatment required the least energy to pretreat 1 kg of SCB. Moreover, the percentage of SCB loss during [EMIM]oAc pretreatment was the lowest. [EMIM]oAc‐pretreated SCB also had the lowest crystallinity index (CI) with the most amorphous structure. CONCLUSION: [EMIM]oAc appears to be another option for pretreating SCB, and other issues such as the recyclability of [EMIM]oAc is worth investigating. Copyright © 2011 Society of Chemical Industry  相似文献   
68.
Electrical capacitance volume tomography (ECVT) is a recently-developed technique for real-time, non-invasive 3D monitoring of processes involving materials with strong contrasts in dielectric permittivity. This work is first application of the method to visualization of water flow in soil. We describe the principles behind the method, and then demonstrate its use with a simple laboratory infiltration experiment. 32 ECVT sensors were installed on the sides of an empty PVC column. Water was poured into the column at a constant rate, and ECVT data were collected every second. The column was then packed with dry sand and again supplied with water at a constant rate with data collected every second. Data were analyzed to give bulk average water contents, which proved consistent with the water supply rates. Data were also analyzed to give 3D images (216 voxels) allowing visualization of the water distribution during the experiments. Result of this work shows that water infiltration into the soil, wall flow, progress of the unstable wetting front and the final water distribution are clearly visible.  相似文献   
69.
Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fully justified and supported by the high similarity between fish and humans in both their genome sequences and the effects provoked in them by ionizing radiation. This review aims to provide the literature state of the art of zebrafish in vivo model for radiobiological studies, particularly focusing on the epigenetic and radiomodifying effects produced during fish embryos’ and larvae’s exposure to radiotherapy treatments.  相似文献   
70.
We demonstrate that there is a new solution-processed electron transport layer, lithium-doped zinc oxide (LZO), with high-performance inverted organic photovoltaic device. The device exhibits a fill factor of 68.58%, an open circuit voltage of 0.86 V, a short-circuit current density of −9.35 cm/mA2 along with 5.49% power conversion efficiency. In addition, we studied the performance of blend ratio dependence on inverted organic photovoltaics. Our device also demonstrates a long stability shelf life over 4 weeks in air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号