Carboplatin-paclitaxel is a reference regimen in the treatment of locally advanced or disseminated non-small cell lung cancer (NSCLC). This paper discusses the multidrug resistance developed with this drug combination, which is one of the major obstacles to successful treatment. In order to understand and overcome the drug resistance pattern of NSCLC after carboplatin plus paclitaxel exposure, levels of mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated protein 3 (MRP3) were investigated in primary NSCLC cell lines (A-549 and A-427) and a metastasis-derived NSCLC cell line (NODO). Our results showed that exposure of the three NSCLC lines to plasma concentrations of paclitaxel (5 μM) produced an increase in MDR1 expression, while MRP3 showed no alteration in expression. By contrast, the same cells exposed to carboplatin plasma concentrations (30 μM) showed overexpression of MRP3. In these cells, MDR1 showed no expression changes. Interestingly, the combination of both paclitaxel and carboplatin caused increased expression of the MDR1 drug resistance gene rather than the individual treatments. These results suggest that carboplatin and paclitaxel may induce drug resistance mediated by MDR1 and MRP3, which may be enhanced by the simultaneous use of both drugs. 相似文献
The present work focuses on an experimental comparison of diesel emissions produced by three fuels: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester biodiesel fuel (B100), and a synthetic Fischer-Tropsch fuel (FT), practically free of sulfur and aromatic compounds, and produced in a gas-to-liquid process. The study was carried out using a 2.5 L direct injection common-rail turbodiesel engine operated at 2400 rpm and 64 N m torque (19% of maximum torque). The engine was tested with single and split (pilot and main) injections and without exhaust gas recirculation (EGR). The study has two objectives. The first objective is to investigate the impact of the start of injection (SOI) on performance and emissions of each fuel. The second objective is to study the isolated impacts of the test fuels on pollutant emissions by adjusting the injection parameters (SOI and fuel rail pressure) for each fuel, while producing practically the same combustion phasing. When the combustion phasing occurs similarly, this study has confirmed that the FT fuel can reduce all regulated diesel emissions under both single and split injection strategies. Finally, it has been confirmed that biodiesel can reduce particle mean diameter in comparison with BP15. However, higher PM mass emission for B100 has been observed under the condition of matched combustion phasing. The increase of the PM mass emission is probably due to the unburned or partially burned hydrocarbon (HC) emissions. 相似文献
Factors related to adoption of new agricultural technologies have been given increasing attention, especially in developing countries where such technologies offer opportunities to increase food production. One of the most immediate ways to improve food production significantly is through the adoption of high yielding varieties of food crops, but rates of adoption are often low, especially among the rural poor. In Timor-Leste, improved varieties of food crops with yield advantages across all agro-ecological zones have been introduced. However, despite yield advantages, suitability and high levels of food insecurity, discontinuance occurs and adoption rates are low. To identify factors related to adoption of the improved varieties across agro-ecological zones, binary logistic regression was performed on data collected from 1511 rural households. The results identified several factors related to adoption and showed that their impact varied across agro-ecological zones. The factor most strongly related to adoption was having a relationship to a grower of an improved variety of food crop and the closeness of this relationship. Furthermore, the following factors were related to adoption with variation across agro-ecological zones: age; education; size of farming plots; travel time between household and farming plot; involvement with the programme developing the improved varieties of food crops and participation in groups and training programmes. Overall, the findings of this study emphasize that dissemination strategies should embrace social relationships and be sensitive to agro-ecological zones. 相似文献
Cyclic steps constitute a characteristic bedform of Froude-supercritical shallow flow over an erodible bed. They are long-wave features that are bounded by hydraulic jumps and migrate upstream. They can be seen in alluvial streams, stream in cohesive sediment, bedrock streams, and on the seafloor in response to turbidity currents. Recent progress in the modeling of cyclic steps is summarized. 相似文献
In this paper we investigate the asymptotic behavior of solutions to the initial boundary value problem for a one-dimensional theory of mixtures of thermoviscoelastic solids. Our main goal is to present conditions which insure the analyticity and the lack of analyticity of the corresponding semigroup. 相似文献
The synthesis and characterization of an inexpensive porous MoxCy/SiO2 material is presented, which was obtained by mixing ammonium hexamolybdate, sucrose, and a mesoporous silica (SBA-15), with a subsequent heat treatment under inert atmosphere. This porous material presented a specific surface area of 170 m2/g. The catalytic behavior in CO2 hydrogenation was compared with that of Mo2C and α-MoC1?x obtained from ammonium hexamolybdate and sucrose, using different Mo/C ratios. CO2 hydrogenation tests were performed at moderate (100 kPa) and high pressures (2.0 MPa), and it was found that only CO, H2O and CH4 are formed at moderate pressures by the three materials, while at higher pressures, methanol and hydrocarbons (C2H6, C3H8) are also obtained. Differences in selectivity were observed at the high pressure tests. Mo2C presented higher selectivity to CO and methanol compared with MoC1?x, which showed preferential selectivity to hydrocarbons (CH4, C2H6). The porous MoxCy/SiO2 material showed the highest CO2 hydrogenation activity at high temperatures (270 and 300 °C), being a promising material for the conversion of CO2 to CO and CH4.