首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   15篇
化学工业   62篇
金属工艺   3篇
建筑科学   5篇
能源动力   4篇
轻工业   17篇
石油天然气   1篇
无线电   3篇
一般工业技术   30篇
冶金工业   5篇
自动化技术   10篇
  2023年   1篇
  2022年   13篇
  2021年   26篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1986年   1篇
  1984年   2篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
91.
Genetically encoded red fluorescent proteins with a large Stokes shift (LSSRFPs) can be efficiently co-excited with common green FPs both under single- and two-photon microscopy, thus enabling dual-color imaging using a single laser. Recent progress in protein development resulted in a great variety of novel LSSRFPs; however, the selection of the right LSSRFP for a given application is hampered by the lack of a side-by-side comparison of the LSSRFPs’ performance. In this study, we employed rational design and random mutagenesis to convert conventional bright RFP mScarlet into LSSRFP, called LSSmScarlet, characterized by excitation/emission maxima at 470/598 nm. In addition, we utilized the previously reported LSSRFPs mCyRFP1, CyOFP1, and mCRISPRed as templates for directed molecular evolution to develop their optimized versions, called dCyRFP2s, dCyOFP2s and CRISPRed2s. We performed a quantitative assessment of the developed LSSRFPs and their precursors in vitro on purified proteins and compared their brightness at 488 nm excitation in the mammalian cells. The monomeric LSSmScarlet protein was successfully utilized for the confocal imaging of the structural proteins in live mammalian cells and multicolor confocal imaging in conjugation with other FPs. LSSmScarlet was successfully applied for dual-color two-photon imaging in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet protein at the resolution of 1.4 Å that revealed a hydrogen bond network supporting excited-state proton transfer (ESPT). Quantum mechanics/molecular mechanics molecular dynamic simulations confirmed the ESPT mechanism of a large Stokes shift. Structure-guided mutagenesis revealed the role of R198 residue in ESPT that allowed us to generate a variant with improved pH stability. Finally, we showed that LSSmScarlet protein is not appropriate for STED microscopy as a consequence of LSSRed-to-Red photoconversion with high-power 775 nm depletion light.  相似文献   
92.
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-β, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.  相似文献   
93.
Single recessive mutations of the methylotrophic yeast Pichia methanolica acs1, acs2, acs3 and icl1 affecting acetyl-CoA synthetase and isocitrate lyase, and growth on ethanol as sole carbon and energy source, caused a defect in autophagic peroxisome degradation during exposure of methanol-grown cells to ethanol. As a control, a mutation in mdd1, which resulted in a defect of the ‘malic’ enzyme and also prevented ethanol utilization, did not prevent peroxisome degradation. Peroxisome degradation in glucose medium was unimpaired in all strains tested. Addition of ethanol to methanol-grown cells of acs1, acs2, acs3 and icl1 mutants led to an increase in average vacuole size. Thickening of peroxisomal membranes and tight contacts between groups of peroxisomes and vacuoles were rarely observed. These processes proceeded much more slowly than in wild-type or mdd1 mutant cells incubated under similar conditions. No peroxisomal remnants were observed inside vacuoles in the cells of acs1, acs2, acs3 and icl1 mutants after prolonged cultivation in ethanol medium. We hypothesize that the acs and icl mutants are defective in synthesis of the true effector—presumably glyoxylate—of peroxisome degradation in ethanol medium. Lack of the effector suspends peroxisome degradation at an early stage, namely signal transduction or peroxisome/vacuole recognition. Finally, these defects in peroxisome degradation resulted in mutant cells retaining high levels of alcohol oxidase which further led to increased levels of acetaldehyde accumulation upon incubation of mutant cells with ethanol. © 1997 by John Wiley & Sons, Ltd.  相似文献   
94.
Genetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2–3- and 5–7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis.  相似文献   
95.
96.
Recent data in respect of the reduction of benzoates to benzyl alcohol and toluene in orange juice show that a risk of toxic substances formation in fruit yoghurt containing benzoates should be re‐evaluated. In this article, the thermodynamic viability of the reduction of benzoates to benzyl alcohol and toluene in milk and yoghurt has been substantiated. Tafel region of redox reactions in milk on the platinum electrode was ?0.2 to ?0.4 V against  the silver chloride electrode. It has been demonstrated that spontaneous redox processes in fruit yoghurt include the conversion of oxidised forms of fruit polyphenols to reduced forms.  相似文献   
97.
The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 μg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40–45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55–65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning.  相似文献   
98.
This study focused on the interactions of pea (Pisum sativum L.) plants with phytopathogenic and beneficial fungi. Here, we examined whether the lysin-motif (LysM) receptor-like kinase PsLYK9 is directly involved in the perception of long- and short-chain chitooligosaccharides (COs) released after hydrolysis of the cell walls of phytopathogenic fungi and identified in arbuscular mycorrhizal (AM) fungal exudates. The identification and analysis of pea mutants impaired in the lyk9 gene confirmed the involvement of PsLYK9 in symbiosis development with AM fungi. Additionally, PsLYK9 regulated the immune response and resistance to phytopathogenic fungi, suggesting its bifunctional role. The existence of co-receptors may provide explanations for the potential dual role of PsLYK9 in the regulation of interactions with pathogenic and AM fungi. Co-immunoprecipitation assay revealed that PsLYK9 and two proposed co-receptors, PsLYR4 and PsLYR3, can form complexes. Analysis of binding capacity showed that PsLYK9 and PsLYR4, synthesized as extracellular domains in insect cells, were able to bind the deacetylated (DA) oligomers CO5-DA–CO8-DA. Our results suggest that the receptor complex consisting of PsLYK9 and PsLYR4 can trigger a signal pathway that stimulates the immune response in peas. However, PsLYR3 seems not to be involved in the perception of CO4-5, as a possible co-receptor of PsLYK9.  相似文献   
99.
100.
Self-contained power supplies and energy storage continue to improve. The criteria that determine their development include efficiency, safety, adaptability, modifiability, and a number of others. In this work, one of the ways to improve the lithium-ion battery by using a new negative electrode is considered. The possibilities of applicability of the improved lithium-ion battery are discussed, its advantages and disadvantages in relation to a hydrogen fuel cell and power sources using hydrogen fuel are considered. The study of the functioning of the new anode, the material of which is a two-layer silicene on a nickel substrate, is carried out at the atomic level. Improvement of the anode characteristics can be achieved by subjecting it to the neutron doping. Li-ion batteries with an improved anode will have higher charging capacity and power, faster charging and improved safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号