首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2089篇
  免费   115篇
  国内免费   3篇
电工技术   11篇
综合类   2篇
化学工业   886篇
金属工艺   39篇
机械仪表   23篇
建筑科学   47篇
矿业工程   8篇
能源动力   52篇
轻工业   356篇
水利工程   9篇
石油天然气   9篇
无线电   79篇
一般工业技术   335篇
冶金工业   125篇
原子能技术   2篇
自动化技术   224篇
  2024年   6篇
  2023年   39篇
  2022年   202篇
  2021年   197篇
  2020年   60篇
  2019年   67篇
  2018年   80篇
  2017年   65篇
  2016年   79篇
  2015年   61篇
  2014年   90篇
  2013年   149篇
  2012年   106篇
  2011年   129篇
  2010年   110篇
  2009年   104篇
  2008年   123篇
  2007年   65篇
  2006年   75篇
  2005年   64篇
  2004年   53篇
  2003年   34篇
  2002年   41篇
  2001年   18篇
  2000年   16篇
  1999年   20篇
  1998年   31篇
  1997年   17篇
  1996年   24篇
  1995年   10篇
  1994年   2篇
  1993年   8篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1981年   4篇
  1978年   5篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1964年   1篇
  1911年   2篇
排序方式: 共有2207条查询结果,搜索用时 10 毫秒
51.
Here, the design, synthesis, and characterization of laser nanomaterials based on dye‐doped methyl methacrylate (MMA) crosslinked with octa(propyl‐methacrylate) polyhedral oligomeric silsesquioxane (8MMAPOSS) is reported in relation to their composition and structure. The influence of the silicon content on the laser action of the dye pyrromethene 567 (PM567) is analyzed in a systematic way by increasing the weight proportion of POSS from 1 to 50%. The influence of the inorganic network structure is studied by replacing the 8MMAPOSS comonomer by both the monofunctionalized heptaisobutyl‐methacryl‐POSS (1MMAPOSS), which defines the nanostructured linear network with the POSS cages appearing as pendant groups of the polymeric chains, and also by a new 8‐hydrogenated POSS incorporated as additive to the polymeric matrices. The new materials exhibit enhanced thermal, optical, and mechanical properties with respect to the pure organic polymers. The organization of the molecular units in these nanomaterials is studied through a structural analysis by solid‐state NMR. The domain size of the dispersed phase assures a homogeneous distribution of POSS into the polymer, thus, a continuous phase corresponding to the organic matrix incorporates these nanometer‐sized POSS crosslinkers at a molecular level, in agreement with the transparency of the samples. The silicon–oxygen core framework has to be covalently bonded into the polymer backbone instead of being a simple additive and both the silica content and crosslinked degree exhibit a critical influence on the laser action.  相似文献   
52.
Directed nanoparticle self‐organization and two‐photon polymerization are combined to enable three‐dimensional soft‐magnetic microactuators with complex shapes and shape‐independent magnetic properties. Based on the proposed approach, single and double twist‐type swimming microrobots with programmed magnetic anisotropy are demonstrated, and their swimming properties in DI‐water are characterized. The fabricated devices are actuated using weak rotating magnetic fields and are capable of performing wobble‐free corkscrew propulsion. Single twist‐type actuators possess an increase in surface area in excess of 150% over helical actuators with similar feature size without compromising the forward velocity of over one body length per second. A generic and facile combination of glycine grafting and subsequent protein immobilization exploits the actuator's increased surface area, providing for a swimming microrobotic platform with enhanced load capacity desirable for future biomedical applications. Successful surface modification is confirmed by FITC fluorescence.  相似文献   
53.
Metal halide perovskites (MHPs) as one of the most active materials gained tremendous attention in the past decade because of their outstanding performance in optoelectronics. Owing to their perovskite structure, ferroelectricity is anticipated in this class of materials. However, whether MHPs are ferroelectric or not remains elusive. Recently, discussion regarding ferroelasticity in MHPs has been also raised. In addition, ionic motion and structural dynamics are well known in MHPs. The interplay of these phenomena including electric polarization, strain, ionic motion, and structural dynamics can have a significant impact on optoelectronics. Therefore, understanding the mechanism behind these phenomena and their interactions is critical in addressing the controversy about ferroicity of MHPs and developing functional devices. Here, the current findings about MHP's ferroicity are summarized and evaluated and a perspective for the future is provided. It is suggested that ionic motion and associated phenomena, coupled with ferroic behavior, are the main drivers behind MHPs functionality. The challenges are also discussed in probing MHPs’ ferroicity and what new measurement modalities are needed to fully understand and characterize MHP behavior. Finally, it is discussed how ferroic and strain can affect the optoelectronic performance of MHPs and how they can be used for engineering of higher performance devices.  相似文献   
54.
Ionicity plays an important role in determining material properties, as well as optoelectronic performance of organometallic trihalide perovskites (OTPs). Ion migration in OTP films has recently been under intensive investigation by various scanning probe microscopy (SPM) techniques. However, controversial findings regarding the role of grain boundaries (GBs) associated with ion migration are often encountered, likely as a result of feedback errors and topographic effects common in to SPM. In this work, electron microscopy and spectroscopy (scanning transmission electron microscopy/electron energy loss spectroscopy) are combined with a novel, open‐loop, band‐excitation, (contact) Kelvin probe force microscopy (BE‐KPFM and BE‐cKPFM), in conjunction with ab initio molecular dynamics simulations to examine the ion behavior in the GBs of CH3NH3PbI3 perovskite films. This combination of diverse techniques provides a deeper understanding of the differences between ion migration within GBs and interior grains in OTP films. This work demonstrates that ion migration can be significantly enhanced by introducing additional mobile Cl? ions into GBs. The enhancement of ion migration may serve as the first step toward the development of high‐performance electrically and optically tunable memristors and synaptic devices.  相似文献   
55.
Temperature‐dependent optical studies of semiconductor quantum dots (QDs) are fundamentally important for a variety of sensing and imaging applications. The steady‐state and time‐resolved photoluminescence properties of CdTe QDs in the size range from 2.3 to 3.1 nm embedded into a protective matrix of NaCl are studied as a function of temperature from 80 to 360 K. The temperature coefficient is found to be strongly dependent on QD size, with the highest sensitivity obtained for the smallest size of QDs. The emission from solid‐state CdTe QD‐based powders is maintained with high color purity over a wide range of temperatures. Photoluminescence lifetime data suggest that temperature dependence of the intrinsic radiative lifetime in CdTe QDs is rather weak, and it is mostly the temperature‐dependent nonradiative decay of CdTe QDs which is responsible for the thermal quenching of photoluminescence intensity. By virtue of the temperature‐dependent photoluminescence behavior, high color purity, photostability, and high photoluminescence quantum yield (26%–37% in the solid state), CdTe QDs embedded in NaCl matrices are useful solid‐state probes for thermal imaging and sensing over a wide range of temperatures within a number of detection schemes and outstanding sensitivity, such as luminescence thermochromic imaging, ratiometric luminescence, and luminescence lifetime thermal sensing.  相似文献   
56.
A new approach to generate a two‐photon up‐conversion photoluminescence (PL) by directly exciting the gap states with continuous‐wave (CW) infrared photoexcitation in solution‐processing quasi‐2D perovskite films [(PEA)2(MA)4Pb5Br16 with n = 5] is reported. Specifically, a visible PL peaked at 520 nm is observed with the quadratic power dependence by exciting the gap states with CW 980 nm laser excitation, indicating a two‐photon up‐conversion PL occurring in quasi‐2D perovskite films. Decreasing the gap states by reducing the n value leads to a dramatic decrease in the two‐photon up‐conversion PL signal. This confirms that the gap states are indeed responsible for generating the two‐photon up‐conversion PL in quasi‐2D perovskites. Furthermore, mechanical scratching indicates that the different‐n‐value nanoplates are essentially uniformly formed in the quasi‐2D perovskite films toward generating multi‐photon up‐conversion light emission. More importantly, the two‐photon up‐conversion PL is found to be sensitive to an external magnetic field, indicating that the gap states are essentially formed as spatially extended states ready for multi‐photon excitation. Polarization‐dependent up‐conversion PL studies reveal that the gap states experience the orbit–orbit interaction through Coulomb polarization to form spatially extended states toward developing multi‐photon up‐conversion light emission in quasi‐2D perovskites.  相似文献   
57.
Nondestructive evaluation methods provide additional information about the material fatigue behavior and enhance the comprehension of damage evolution thanks to relationship between microstructure and physical properties. This paper deals with optical and ultrasonic investigations of structural steel specimens tested for low-cycle fatigue. The development of persistent slip bands observed on the surface with an optical microscope was quantified using a previously trained neural network and fractal analysis. A surface damage parameter was defined as the ratio of total area of detected slip bands to the area of observed surface. Relationships between the rate of change and critical value of the damage parameter, the strain range, and the fatigue life were established. A single square relationship between relative number of cycles and ratio of the surface damage parameter to its critical value was obtained. Acoustic birefringence was measured by the echo method. The effect of the strain range on the rate of change in acoustic birefringence was investigated. A single linear relationship between relative number of cycles and change in acoustic birefringence was established. An algorithm for predicting the material remaining life, combining optical and ultrasonic data, was proposed.  相似文献   
58.
Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N2/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid–base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H2 and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.  相似文献   
59.
The so-called characteristic curves of Brown—the Amagat (Joule inversion), Boyle, and Charles (Joule–Thomson inversion) curves—of hydrogen are calculated with several equations of state. This work demonstrates that not all equations can generate physically reasonable Amagat curves. After inclusion of corrections for soft repulsion (based on the Weeks–Chandler–Andersen perturbation theory) and quantum effects into the simplified perturbed-hard-chain theory (SPHCT) equation of state, this equation is able to not only generate an Amagat curve, but also predict pVT data, residual Gibbs energies, and heat capacities of several gases at and above 100 MPa reasonably well.  相似文献   
60.
We present a novel comprehensive optimization model for designing reconfigurable machining lines. Due to the proposed fine mathematical modelling, it is possible to optimize simultaneously the whole set of machines and machining modules as well as their cutting parameters, their configuration that will be used for processing of each part and part position at each machine. The experimental results show that the proposed optimization approach substantially outperforms the existing heuristic design method and therefore it can be used by the designers in order to reduce the total system cost and improve the efficiency of reconfigurable machining lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号