首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   63篇
  国内免费   8篇
电工技术   13篇
综合类   4篇
化学工业   205篇
金属工艺   42篇
机械仪表   45篇
建筑科学   29篇
能源动力   54篇
轻工业   92篇
水利工程   34篇
石油天然气   18篇
无线电   109篇
一般工业技术   189篇
冶金工业   38篇
原子能技术   9篇
自动化技术   123篇
  2024年   1篇
  2023年   14篇
  2022年   31篇
  2021年   60篇
  2020年   47篇
  2019年   55篇
  2018年   69篇
  2017年   69篇
  2016年   66篇
  2015年   45篇
  2014年   60篇
  2013年   103篇
  2012年   56篇
  2011年   71篇
  2010年   43篇
  2009年   44篇
  2008年   46篇
  2007年   22篇
  2006年   18篇
  2005年   13篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1984年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1004条查询结果,搜索用时 15 毫秒
991.

Silicon nitride (Si3N4) coating was deposited on AISI D2 tool steel through employing duplex surface treatments—pack siliconizing followed by plasma nitriding. Pack cementation was performed at 650 °C, 800 °C, and 950 °C for 2 and 3 hours by using various mixtures to realize the silicon coating. X-ray diffraction analyses and scanning electron microscopy observations were employed for demonstrating the optimal process conditions leading to high coating adhesion, uniform thickness, and composition. The optimized conditions belonging to siliconizing were employed to produce samples to be further processed via plasma nitriding. This treatment was performed with a gas mixture of 75 pct H2-25 pct N2, at the temperature of 550 °C for 7 hours. The results showed that different nitride phases such as Si3N4-β, Si3N4-γ, Fe4N, and Fe3N can be recognized as coatings reinforcements. It was demonstrated that the described composite coating procedure allowed to obtain a remarkable increase in hardness (80 pct higher with respect to the substrate) and wear resistance (30 pct decrease of weight loss) of the tool steel.

  相似文献   
992.
Thermostable exoshells (tES) are engineered proteinaceous nanoparticles used for the rapid encapsulation of therapeutic proteins/enzymes, whereby the nanoplatform protects the payload from proteases and other denaturants. Given the significance of oral delivery as the preferred model for drug administration, we structurally improved the stability of tES through multiple inter-subunit disulfide linkages that were initially absent in the parent molecule. The disulfide-linked tES, as compared to tES, significantly stabilized the activity of encapsulated horseradish peroxidase (HRP) at acidic pH and against the primary human digestive enzymes, pepsin, and trypsin. Furthermore, the disulfide-linked tES (DS-tES) exhibited significant intestinal permeability as evaluated using Caco2 cells. In vivo bioluminescence assay showed that encapsulated Renilla luciferase (rluc) was ~3 times more stable in mice compared to the free enzyme. DS-tES collected mice feces had ~100 times more active enzyme in comparison to the control (free enzyme) after 24 h of oral administration, demonstrating strong intestinal stability. Taken together, the in vitro and in vivo results demonstrate the potential of DS-tES for intraluminal and systemic oral drug delivery applications.  相似文献   
993.
The present study reports the preparation, characterization, and investigation of properties of DNR/f-Al2O3 nanocomposites through an in situ emulsion polymerization technique. The method consists of the dispersion of pretreated nano-alumina (f-Al2O3 NPs) onto deproteinized natural rubber (DNR) latex, followed by the polymerization reaction with the K2S2O8/K2S2O5 redox initiation system, after deproteinization of natural rubber using urea in the presence of a surfactant. To improve the compatibility and reactivity of the nanofillers with DNR latex, the nano-alumina surface was treated with 3-methacryloxypropyltrimethoxysilane (MPS) to produce f-Al2O3 NPs. The thermo-gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy approved that the MPS was bound onto the surface of Al2O3 NP. The resulting nanocomposites were characterized using standard techniques for physical properties and structural morphology, including X-ray diffraction (XRD) analysis, FTIR spectroscopy, scanning electron microscopy (SEM), and TGA. The SEM images showed a homogeneous distribution of f-Al2O3 NPs throughout DNR matrix. Due to such monodisperse particles, the DNR/f-Al2O3 nanocomposite films revealed significant enhancement in thermal stability with increasing nano-alumina loading as compared with the neat DNR.  相似文献   
994.
995.
Mitigating CO2 emissions from industries and other sectors of our economy is a critical component of building a sustainable economy. This paper investigates two different methanol synthesis routes based on CO2 utilization (CO2 capture and utilization [CCU], and tri-reforming of methane [TRM]), and compares the results with the conventional methanol production using natural gas as the feedstock (NG-MeOH). A comprehensive techno-economic analysis (TEA) model that includes the findings of the life cycle assessment (LCA) models of methanol production using various CO2 utilization pathways is conducted. Economic analysis is conducted by developing a cost model that is connected to the simulation models for each production route. Compared to the conventional process (with a GHG emission of 0.6 kg CO2/kg MeOH), the lifecycle GHG reduction of 1.75 and 0.41 kg CO2/kg MeOH are achievable in the CCU and TRM pathways, respectively. Furthermore, the results indicate that, under current market conditions and hydrogen production costs, methanol production via CO2 hydrogenation will result in a cost approximately three times higher than that of the conventional process. The integrated TEA–LCA model shows that this increased cost of production equates to a required life cycle GHG reduction credit of $279 to $422 per tonne of CO2 utilized, depending on construction material and selected pathway. Additionally, when compared to the CO2 hydrogenation route, the tri-reforming process (TRM-MeOH) can result in a 42% cost savings. Furthermore, a minimum financial support of $56 per tonne utilized CO2 will be required to make the TRM-MeOH process economically viable.  相似文献   
996.
Controllable patterning of bio-compatible polymers in the presence of a cross-linker in evaporating bi-dispersed colloidal drops is of critical importance in functional coatings, bioprinting, and food packaging. This study investigates the effect of calcium chloride and sodium alginate concentration on the evaporative deposition and elemental distribution of dried-out patterns. Different concentrations of alginate and salt in aqueous solutions are deposited on clean glass substrates to gain a deeper understanding of the final structures. Overall, the results indicate that changing the concentrations of sodium alginate and calcium chloride can significantly alter the elemental distribution and deposition uniformity of the final patterns. The modifications in relative concentration alter the physicochemical characteristics of the solution, resulting in significant changes in the pinning time and contact angle of the droplets that correspond to the alteration of the colloidal size and concentration, ultimately resulting in significant differences in deposition patterns. The dried-out patterns are categorized based on their structures and mechanisms (crystallization, sedimentation, and adsorption) controlling the evaporative deposition, and then justified based on the competitive effects of cross-linking, crystallization, and evaporation-driven flows. Using scanning electron microscopy and energy-dispersive X-ray spectroscopy, the elemental distribution of dried-out patterns is also mapped to substantiate the discussion made.  相似文献   
997.
Sadeghi  Saeedeh  Daziano  Ricardo  Yoon  So-Yeon  Anderson  Adam K. 《Virtual Reality》2023,27(2):1051-1061
Virtual Reality - Time sometimes feels like it is flying by or slowing down. Previous research indicates objective number of items, subjective affect, and heart rate all can influence the...  相似文献   
998.
Microwave communication devices necessitate elements with high electrical conductivity, a property which was traditionally found in metals (e.g., copper). However, in applications such as satellite communications, metals prevent the payload from achieving lightweight and flexible characteristics. Here, we demonstrate the development of MXene film microwave resonators, leveraging MXene's high electrical conductivity and unique mechanical properties. To investigate resonant performance in humid conditions and study the effects of MXene's processing and treatment, MXene films with different flake sizes are prepared and exposed to cyclic humidity. For the large- and small-flake Ti3C2 MXene films in cyclic humidity, the large-flake film demonstrates higher electrical conductivity, higher resonance quality factor (150 and 35 as unloaded, and loaded), and less fluctuation of performance (≈1.7% total shift in resonance frequency). Further, by implementing MXene films of two different diameters, the correlation between film size and resonant frequency is demonstrated. By introducing an active resonant configuration, the effect of MXene degradation and microwave losses can be compensated. This active feedback loop demonstrates a ≈300 times increase in the quality factor of MXene resonators. As a building block for terrestrial and satellite communication modules, MXene resonators potentiate the replacement of metals in achieving unique electrical and mechanical properties.  相似文献   
999.
The present study investigated the wear and electrochemical behaviors of CrN/AlCrN multilayered coatings post-annealed at 300, 450, and 600°C temperatures. The cathodic arc evaporation technique has been utilized to deposit the coatings. Scanning electron microscope, field emission SEM, energy-dispersive X-ray, grazing incidence X-ray diffraction, and Rockwell-C indenter methods were used to characterize the coatings and to investigate the interdiffusion between the multilayered CrN/AlCrN and the H13 base metal. The results showed that the sharp interface of the CrN and AlCrN layers was blurred by the annealing process supporting the interdiffusion of the layers. The reciprocating wear test and the microhardness tester were used to evaluate the coatings’ mechanical behavior. The hardness and roughness of the coatings were increased by increasing the post-annealing temperature. The smallest wear rates were observed for the samples treated at 300 and 450°C, which were approximately 17 times and 12 times smaller than the wear rate of the sample annealed at 600°C. Electrochemical testing was used to study the corrosion behavior of the coatings. The results showed that by increasing annealing temperature, corrosion resistances of the coatings are improved. As a result, the corrosion current density of the 600°C annealed coating was approximately 434 times smaller than as-deposited coatings.  相似文献   
1000.
A semi-active T-type micromixer is designed to intensify micromixing by actuating magnetic nanoparticles (MNPs). Five permanent magnets in a zig-zag arrangement are located next to the mixing channel of the micromixer to apply the magnetic field to the fluid flow. Micromixing performance is considered in terms of the segregation index (XS) by the Villermaux/Dushman reaction test. The effects of magnetic flux intensity (B = 380–500 mT), the concentration of MNPs (φ = 0.002–0.01 [w/v]), and flow rate ratios on XS and pressure drop are investigated. By increasing MNPs concentration from φ = 0.002–0.008 (w/v), XS decreased and the rise in φ up to 0.008 (w/v) has not been significant on XS. Maximum mixing efficiency (i.e., minimum XS = 0.0088) is achieved for B = 500 mT and φ = 0.01 (w/v). By applying the magnetic field, the mixing performance increased due to the motion of MNPs, but its negative effect is an increase in the pressure drop along the micromixer reactor. Generally, with the formation of MNPs barriers inside the mixing channel, the main fluid flows through these layers and creates the sinusoidal flow paths compared to no magnetic field conditions, and thus, a superior mixing efficiency could be attained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号