首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   36篇
  国内免费   2篇
电工技术   5篇
综合类   4篇
化学工业   104篇
金属工艺   13篇
机械仪表   8篇
建筑科学   15篇
矿业工程   1篇
能源动力   22篇
轻工业   44篇
水利工程   3篇
石油天然气   2篇
无线电   63篇
一般工业技术   74篇
冶金工业   28篇
原子能技术   1篇
自动化技术   58篇
  2024年   2篇
  2023年   11篇
  2022年   14篇
  2021年   16篇
  2020年   18篇
  2019年   24篇
  2018年   28篇
  2017年   25篇
  2016年   30篇
  2015年   16篇
  2014年   22篇
  2013年   40篇
  2012年   20篇
  2011年   33篇
  2010年   27篇
  2009年   20篇
  2008年   16篇
  2007年   10篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1976年   2篇
  1964年   2篇
  1943年   1篇
排序方式: 共有445条查询结果,搜索用时 0 毫秒
351.
We report on our study of dc voltage-induced structural changes at reduced and oxidized Fe-doped SrTiO3 (Fe:STO) electrode interfaces using second harmonic generation (SHG) together with photoluminescence (PL) method. We show that oxygen vacancy defects play a critical role in determining the local electrical and structural properties of interfacial depletion regions at Schottky junctions. The SHG results show that the dc electric field causes oxygen ions and vacancies to displace toward the anode and cathode in the low field regime, respectively. This process forms electrostrictive distortions within local interfacial depletion regions which are described by Fe:Ti-O bond stretching and bending. Differences in the EFISHG responses from the oxidized and reduced crystal interfaces are explained according to local oxygen vacancy concentrations and dynamics and their effects on the Schottky barrier heights and depletion region widths at each interface. These results are further supported by our PL measurements. Oxygen ion migration toward the Fe:STO surface leads to enhanced fluorescence intensities from in-gap acceptor states. We demonstrate that SHG and PL measurements are well-suited for understanding and resolving the underlying causes of dielectric breakdown processes and device failure brought on by dc electric field and ionic defect migrations in perovskite-type electroceramics.  相似文献   
352.
Coal joints and cleats are geological discontinuities that are the most important factors that affect the mechanical responses of a coal mass under stress. The joint and coal mass interaction and the mode of failure dominate the mechanical behaviour of jointed coal masses, and therefore the stability of coal excavations. The shear or mixed shear/tensile failure changes to tensile failure by increasing the confining pressure, discontinuity length and angle. This paper extends a thermodynamic approach to constitutive modelling of the coal mass by developing local and non-local damage models based on the joint and cleat density and the dip angle. A consistent and rigorous statistical framework is constructed, which incorporates both local and non-local features into the constitutive modelling. This is an important consideration in developing damage constitutive models based on the trajectory of the failure surfaces in a coal mass.An equation is derived to calculate the fracture energy which is a function of the joint density either in a single direction or crossed conditions.  相似文献   
353.
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.  相似文献   
354.
Magnetic Resonance Materials in Physics, Biology and Medicine - Both fibroadenomas (FAs) and phyllodes tumors (PTs) are classified as fibroepithelial lesions. PTs are rare fibroepithelial neoplasms...  相似文献   
355.
A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited strong photoactivity in the extended visible range up to 540 nm with 30.6% apparent quantum efficiency (λ = 420 nm).  相似文献   
356.
Recently, germanium selenide (GeSe) has emerged as a promising van der Waals semiconductor for photovoltaics, solar light harvesting, and water photoelectrolysis cells. Contrary to previous reports claiming perfect ambient stability based on experiments with techniques without surface sensitivity, here, by means of surface-science investigations and density functional theory, it is demonstrated that actually both: i) the surface of bulk crystals; and ii) atomically thin flakes of GeSe are prone to oxidation, with the formation of self-assembled germanium-oxide skin with sub-nanometric thickness. Surface oxidation leads to the decrease of the bandgap of stoichiometric GeSe and GeSe1−x, while bandgap energy increases upon surface oxidation of Ge1−xSe. Remarkably, the formation of a surface oxide skin on GeSe crystals plays a key role in the physicochemical mechanisms ruling photoelectrocatalysis: the underlying van der Waals semiconductor provides electron–hole pairs, while the germanium-oxide skin formed upon oxidation affords the active sites for catalytic reactions. The self-assembled germanium-oxide/germanium-selenide heterostructure with different bandgaps enables the activation of photocatalytic processes by absorption of light of different wavelengths, with inherently superior activity. Finally, it is discovered that, depending on the specific solvent-GeSe interaction, the liquid phase exfoliation of bulk crystals can induce the formation of Se nanowires.  相似文献   
357.
In this study, ultrasound-assisted (UA) neutralization parameters are optimized using the response surface methodology to develop a novel alkali neutralization method based on the minimal refining concept. Sodium hydroxide (NaOH), magnesium oxide (MgO), and calcium hydroxide (Ca(OH)2) are used in both the traditional (TR) and UA neutralizations. Optimum probe depth, duration, and intensity levels are calculated as 3.7 cm, 25 s, and 54.3%, respectively, for UA neutralization with NaOH, which is more successful at free fatty acid (FFA) reduction and total phenolic content (TPC) retention than MgO and Ca(OH)2. Validation results of optimum conditions show that lowest average FFA content (0.29%) and highest average TPC (211.2 mg kg−1) are determined for the UA-neutralized safflower oil samples. The comparison of all the neutralization experiments reveal that the UA neutralization under optimum conditions using NaOH reduced 82.8% of the FFA content, whereas the TR alkali neutralization reduced the FFA content at a maximum of only 47.8%. Practical Applications: From the results, it can be inferred that the UA neutralization exhibits good performance in FFA content reduction and bioactive compound retention while offering a good solution within the concept of minimal refining.  相似文献   
358.
The actuator line method (ALM) is today widely used to represent wind turbine loadings in computational fluid dynamics (CFD). As opposed to resolving the whole blade geometry, the methodology does not require geometry‐fitted meshes, which makes it fast to apply. In ALM, tabulated airfoil data are used to determine the local blade loadings, which subsequently are projected to the CFD grid using a Gaussian smearing function. To achieve accurate blade loadings at the tip regions of the blades, the width of the projection function needs to be narrower than the local chord lengths, requiring CFD grids that are much finer than what is actually needed in order to resolve the energy containing turbulent structures of the atmospheric boundary layer (ABL). On the other hand, employing large widths of the projection function may result in too large tip loadings. Therefore, the number of grid points required to resolve the blade and the width of the projection function have to be restricted to certain minimum values if unphysical corrections are to be avoided. In this paper, we investigate the cause of the overestimated tip loadings when using coarse CFD grids and, based on this, introduce a simple and physical consistent correction technique to rectify the problem. To validate the new correction, it is first applied on a planar wing where results are compared with the lifting‐line technique. Next, the NREL 5‐MW and Phase VI turbines are employed to test the correction on rotors. Here, the resulting blade loadings are compared with results from the blade‐element momentum (BEM) method. In both cases, it is found that the new correction greatly improves the results for both normal and tangential loads and that it is possible to obtain accurate results even when using a very coarse blade resolution.  相似文献   
359.
360.
Networks and Spatial Economics - We aim to design an effective supply chain network for a blood distribution system to satisfy the needs of hospitals in a certain region. In the analyzed current...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号