首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
电工技术   1篇
综合类   3篇
化学工业   25篇
轻工业   4篇
水利工程   1篇
一般工业技术   4篇
冶金工业   3篇
自动化技术   1篇
  2022年   5篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有42条查询结果,搜索用时 390 毫秒
21.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.  相似文献   
22.
Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene encoding an epithelial anion channel. In CF, Cl and HCO3 hyposecretion, together with mucin hypersecretion, leads to airway dehydration and production of viscous mucus. This habitat is ideal for colonization by pathogenic bacteria. We have recently demonstrated that HCO3 inhibits the growth and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus when tested in laboratory culture media. Using the same bacteria our aim was to investigate the effects of HCO3 in artificial sputum medium (ASM), whose composition resembles CF mucus. Control ASM containing no NaHCO3 was incubated in ambient air (pH 7.4 or 8.0). ASM containing NaHCO3 (25 and 100 mM) was incubated in 5% CO2 (pH 7.4 and 8.0, respectively). Viable P. aeruginosa and S. aureus cells were counted by colony-forming unit assay and flow cytometry after 6 h and 17 h of incubation. Biofilm formation was assessed after 48 h. The data show that HCO3 significantly decreased viable cell counts and biofilm formation in a concentration-dependent manner. These effects were due neither to extracellular alkalinization nor to altered osmolarity. These results show that HCO3 exerts direct antibacterial and antibiofilm effects on prevalent CF bacteria.  相似文献   
23.
Pervaporation is an important membrane separation method of chemical engineering. In this work,silver-nanoparticles-poly(vinyl alcohol) nanocomposite membranes(AgNPs-PVA) are produced for the sake of improving its potentials for pervaporation of ethanol–water mixture so that the usual opposite trend between membrane selectivity and permeation can be reduced. The nanocomposite membranes are fabricated from an aqueous solution of poly(vinyl alcohol) with silver nanoparticles via the in-situ generation technique in the absence of any reducing agent. Successful generation of the nano size silver is measured by the UV–vis spectrum showing a single peak at 419 nm due to the plasmonic effect of silver nanoparticles. Our nanocomposite AgNPs-PVA membranes are characterized using scanning electron microscope(SEM), Fourier-transform infrared(FT-IR) spectroscopy, X-ray diffraction and thermogravimetric analysis(TGA). The pervaporation tests of our new AgNPs-PVA membranes show good results since at a higher temperature and higher ethanol concentration in the feed, the prepared membranes are highly permeable for the water having stable selectivity values and therefore our membranes show better performance compared to that of the other PVA-based nanocomposite membranes.  相似文献   
24.
Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated—in conjunction with the electron microscopy—that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.  相似文献   
25.
26.
The wheat semi-dwarfing genes Rht (Reduced height) are widely distributed among the contemporary wheat varieties. These genes also exert pleiotropic effects on plant tolerance towards various abiotic stressors. In this work, frost tolerance was studied in three near-isogenic lines of the facultative variety ‘April Bearded’ (AB), carrying the wild type allele Rht-B1a (tall phenotype), and the mutant alleles Rht-B1b (semi-dwarf) and Rht-B1c (dwarf), and was further compared with the tolerance of a typical winter type variety, ‘Mv Beres’. The level of freezing tolerance was decreasing in the order ‘Mv Beres’ > AB Rht-B1a > AB Rht-B1b > AB Rht-B1c. To explain the observed differences, cold acclimation-related processes were studied: the expression of six cold-related genes, the phenylpropanoid pathway, carbohydrates, amino acids, polyamines and compounds in the tricarboxylic acid cycle. To achieve this, a comprehensive approach was applied, involving targeted analyses and untargeted metabolomics screening with the help of gas chromatography/liquid chromatography—mass spectrometry setups. Several cold-related processes exhibited similar changes in these genotypes; indeed, the accumulation of eight putrescine and agmatine derivatives, 17 flavones and numerous oligosaccharides (max. degree of polymerization 18) was associated with the level of freezing tolerance in the ‘April Bearded’ lines. In summary, the mutant Rht alleles may further decrease the generally low frost tolerance of the Rht-B1a, and, based on the metabolomics study, the mechanisms of frost tolerance may differ for a typical winter variety and a facultative variety. Present results point to the complex nature of frost resistance.  相似文献   
27.
Silicon nitride (Si3N4) ceramics have superior mechanical properties allowing their broad application in many technical fields. In this work, Si3N4-based composites with 1–5?wt% multilayer graphene (MLG) content were fabricated by spark plasma sintering at different temperatures and holding time in order to improve the fracture resistance of the Si3N4 ceramic. Our investigation focused on understanding the relationships between the microstructure and mechanical properties with special attention to the intergranular phases between Si3N4 matrix and MLG reinforcement.We have found that nanopores developed at the Si3N4-MLG interface due to a reaction between carbon and the oxygen available in the topmost layer of the Si3N4 particles. Interface porosity has an optimum for the toughening effect. In 1?wt% MLG/Si3N4 composites nanopores are local, but separated at the Si3N4-MLG interface, which promote the MLG pull-out mechanism imparting a significant toughening effect on the composite. Beyond the optimal 1?wt% MLG content, MLG platelets agglomerate and excessive porosity are developed at the Si3N4-MLG interfaces, leading to weaker matrix- graphene adhesion and thus lower fracture toughness.  相似文献   
28.
BACKGROUND: Lactobacillus and Bifidobacterium strains are present in a great variety of habitats, including fermented products, probiotic concoctions and the human colon. Some species are so closely related that it is difficult to distinguish them by microbiological techniques. Nevertheless, discrimination of isolates is an important issue in respect of application, and molecular methods such as restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD) or species‐specific polymerase chain reaction (PCR) might help in resolving this problem. In this study, PCR, RFLP and sequencing were applied to identify lactobacilli and bifidobacteria originating from various sources and the DSMZ strain collection. RESULTS: The microbiological composition of foods was analysed by molecular methods. Using species‐specific PCR primers, three restriction enzymes (AluI, HhaI and RsaI) and sequencing, three Bifidobacterium and six Lactobacillus reference strains could be distinguished and four additional lactobacilli of food origin were identified. CONCLUSION: A combination of three molecular methods resulted in successful discrimination of nine reference strains and four isolates of food origin. Since these methods are not always accurate owing to their high genetic homogeneity, it is advisable to use more than one method for the identification of L. casei and closely related species. Copyright © 2012 Society of Chemical Industry  相似文献   
29.
Current optical super-resolution implementations are capable of resolving features spaced just a few nanometers apart. However, translating this spatial resolution to cellular targets is limited by the large size of traditionally employed primary and secondary antibody reagents. Recent advancements in small and efficient protein binders for super-resolution microscopy, such as nanobodies or aptamers, provide an exciting avenue for the future; however, their widespread availability is still limited. To address this issue, here we report the combination of bacterial-derived binders commonly used in antibody purification with DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy. The small sizes of these protein binders, relative to secondary antibodies, make them an attractive labeling alternative for emerging superresolution techniques. We present here a labeling protocol for DNA conjugation of bacterially derived proteins A and G for DNA-PAINT, having assayed their intracellular performance by targeting primary antibodies against tubulin, TOM20, and the epidermal growth factor receptor (EGFR) and quantified the increases in obtainable resolution.  相似文献   
30.
It has been demonstrated that patients with schizophrenia perform poorly on tasks that require orienting, focusing, maintaining, and shifting attention. However, it is unknown how patients with schizophrenia can track multiple moving targets. To elucidate this issue, the authors investigated fast and slow multiple-object tracking in patients with schizophrenia (n = 30) and in matched healthy control participants (n = 30) and assessed their relationship with motion perception (velocity discrimination), sustained attention and context processing (Continuous Performance Test, 1-9 version; J. R. Finkelstein, T. D. Cannon, R. E. Gur, R. C. Gur, & P. Moberg, 1997), and object and spatial working memory. Results revealed that patients with schizophrenia displayed impaired performances on multiple-object tracking tasks. Linear regression analysis revealed a specific relationship among object tracking, velocity discrimination, and spatial working memory. In patients with schizophrenia, velocity discrimination and spatial working memory were the predictive factors of multiple-object tracking, whereas in healthy control participants, the single predictive factor was velocity discrimination. Probabilistic regression analysis revealed that only the Continuous Performance Test made significant contribution to discriminating between patients and control participants. These results suggest that multiple-object tracking is impaired in schizophrenia, and that it is specifically associated with motion perception and spatial working memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号