首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2837篇
  免费   38篇
  国内免费   2篇
电工技术   46篇
综合类   2篇
化学工业   756篇
金属工艺   85篇
机械仪表   81篇
建筑科学   68篇
矿业工程   9篇
能源动力   101篇
轻工业   508篇
水利工程   14篇
石油天然气   34篇
无线电   163篇
一般工业技术   369篇
冶金工业   277篇
原子能技术   16篇
自动化技术   348篇
  2024年   55篇
  2023年   37篇
  2022年   98篇
  2021年   150篇
  2020年   96篇
  2019年   111篇
  2018年   131篇
  2017年   123篇
  2016年   109篇
  2015年   69篇
  2014年   100篇
  2013年   200篇
  2012年   152篇
  2011年   162篇
  2010年   146篇
  2009年   148篇
  2008年   112篇
  2007年   94篇
  2006年   66篇
  2005年   67篇
  2004年   44篇
  2003年   39篇
  2002年   39篇
  2001年   31篇
  2000年   44篇
  1999年   38篇
  1998年   76篇
  1997年   70篇
  1996年   50篇
  1995年   37篇
  1994年   23篇
  1993年   33篇
  1992年   12篇
  1991年   18篇
  1990年   10篇
  1989年   11篇
  1988年   11篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1982年   5篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   11篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
排序方式: 共有2877条查询结果,搜索用时 15 毫秒
971.
972.
973.
974.
975.
    
Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.  相似文献   
976.
    
Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells’ (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.  相似文献   
977.
    
One of the most important diagnostic challenges in clinical practice is the distinction between pulmonary hypertension (PH) due to primitive pulmonary arterial hypertension (PAH) and PH due to left heart diseases. Both conditions share some common characteristics and pathophysiological pathways, making the two processes similar in several aspects. Their diagnostic differentiation is based on hemodynamic data on right heart catheterization, cardiac structural modifications, and therapeutic response. More specifically, PH secondary to heart failure with preserved ejection fraction (HFpEF) shares features with type 1 PH (PAH), especially when the combined pre- and post-capillary form (CpcPH) takes place in advanced stages of the disease. Right ventricular (RV) dysfunction is a common consequence related to worse prognosis and lower survival. This condition has recently been identified with a new classification based on clinical signs and progression markers. The role and prevalence of PH and RV dysfunction in HFpEF remain poorly identified, with wide variability in the literature reported from the largest clinical trials. Different parenchymal and vascular alterations affect the two diseases. Capillaries and arteriole vasoconstriction, vascular obliteration, and pulmonary blood fluid redistribution from the basal to the apical district are typical manifestations of type 1 PH. Conversely, PH related to HFpEF is primarily due to an increase of venules/capillaries parietal fibrosis, extracellular matrix deposition, and myocyte hypertrophy with a secondary “arteriolarization” of the vessels. Since the development of structural changes and the therapeutic target substantially differ, a better understanding of pathobiological processes underneath PH-HFpEF, and the identification of potential maladaptive RV mechanisms with an appropriate diagnostic tool, become mandatory in order to distinguish and manage these two similar forms of pulmonary hypertension.  相似文献   
978.
    
Sunitinib and pazopanib are tyrosine kinase inhibitors (TKIs) used as first-line therapy for metastatic renal cell carcinoma (RCC). Although these TKIs are associated with similar survival outcomes, some differences have been reported in their safety profiles. In this work, traditional toxicological endpoints (cell viability and growth, oxidative stress, and nuclear morphology) and 1H NMR spectroscopy-based metabolomics analysis were used to provide new insights into the cytotoxicity and metabolic mechanisms underlying sunitinib and pazopanib treatments. Tumoral (Caki-1) and non-tumoral (HK-2) human renal cells were exposed to clinically relevant concentrations of sunitinib (2 µM) or pazopanib (50 µM). Sunitinib showed selectivity for cancer cells, inhibiting proliferation, and inducing apoptotic death of Caki-1 cells, whereas pazopanib had a similar cytotoxic effect in both tumoral and non-tumoral cells. 1H-NMR metabolomics unveiled a higher impact of sunitinib on the levels of intracellular metabolites of Caki-1 cells (seven dysregulated metabolites), suggesting dysregulations on amino acid, glutathione and glycerophospholipid metabolisms. In contrast, pazopanib had a higher impact on the levels of extracellular metabolites of Caki-1 cells (seven dysregulated metabolites in culture medium), unveiling alterations on amino acid and energetic metabolisms. In HK-2 cells, sunitinib caused only a minor increase in intracellular isoleucine levels, whereas pazopanib induced several alterations on the intracellular (three dysregulated metabolites) and extracellular (three dysregulated metabolites) compartments suggesting changes on amino acid, glycerophospholipid, and energy metabolisms. Our results demonstrate that these TKIs elicit distinct cellular and metabolic responses, with sunitinib showing better in vitro efficacy against target RCC cells and lesser nephrotoxic potential than pazopanib.  相似文献   
979.
980.
    
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind’s wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号