首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   3篇
化学工业   10篇
金属工艺   1篇
建筑科学   1篇
能源动力   2篇
轻工业   4篇
无线电   19篇
一般工业技术   17篇
冶金工业   2篇
自动化技术   23篇
  2023年   3篇
  2022年   6篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  1997年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
11.
In this paper, a single-item capacitated lot-sizing problem in a flow-shop system with energy consideration is studied. The planning horizon is defined by a set of periods where each one is characterised by a length, an allowed maximal power, an electricity price, a power price and a demand. The objective is to determine the quantities to be produced by each machine at each period while minimising the production cost in terms of electrical, inventory, set-up and power required costs. For medium- and large-scale problems, lot-sizing problems are hard to solve. Therefore, in this study, two heuristics are developed to solve this problem in a reasonable time. To evaluate the performances of these heuristics, computational experiments are presented and numerical results are discussed and analysed.  相似文献   
12.
Alloying in group V 2D materials and heterostructures is an effective degree of freedom to tailor and enhance their physical properties. Up to date, black arsenic‐phosphorus is the only 2D group V alloy that has been experimentally achieved by exfoliation, leaving all other possible alloys in the realm of theoretical predictions. Herein, the existence of an additional alloy consisting of 2D antimony arsenide (2D‐AsxSb1?x) grown by molecular beam epitaxy on group IV semiconductor substrates and graphene is demonstrated. The atomic mixing of As and Sb in the lattice of the grown 2D layers is confirmed by low‐energy electron diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. The As content in 2D‐AsxSb1?x is shown to depend linearly on the As4/Sb4 deposition rate ratio and As concentrations up to 15 at% are reached. The grown 2D alloys are found to be stable in ambient conditions in a timescale of weeks but to oxidize after longer exposure to air. This study lays the groundwork for a better control of the growth and alloying of group V 2D materials, which is critical to study their basic physical properties and integrate them in novel applications.  相似文献   
13.
14.
The accurate manipulation of strain in silicon nanowires can unveil new fundamental properties and enable novel or enhanced functionalities. To exploit these potentialities, it is essential to overcome major challenges at the fabrication and characterization levels. With this perspective, we have investigated the strain behavior in nanowires fabricated by patterning and etching of 15 nm thick tensile strained silicon (100) membranes. To this end, we have developed a method to excite the "forbidden" transverse-optical (TO) phonons in single tensile strained silicon nanowires using high-resolution polarized Raman spectroscopy. Detecting this phonon is critical for precise analysis of strain in nanoscale systems. The intensity of the measured Raman spectra is analyzed based on three-dimensional field distribution of radial, azimuthal, and linear polarizations focused by a high numerical aperture lens. The effects of sample geometry on the sensitivity of TO measurement are addressed. A significantly higher sensitivity is demonstrated for nanowires as compared to thin layers. In-plane and out-of-plane strain profiles in single nanowires are obtained through the simultaneous probe of local TO and longitudinal-optical (LO) phonons. New insights into strained nanowires mechanical properties are inferred from the measured strain profiles.  相似文献   
15.
Distributed renewable energy sources offer significant alternatives for Qatar and the Arab Gulf region’s future fuel supply and demand. Microgrids are essential for providing dependable power in difficult-to-reach areas while incorporating significant amounts of renewable energy sources. In energy-efficient data centers, distributed generation can be used to meet the facility’s overall power needs. This study primarily focuses on the best energy management practices for a smart microgrid in Qatar while taking demand-side load management into account. This article looked into a university microgrid in Qatar that primarily aimed to get all of its energy from the grid. While diesel generators are categorized as a dispatchable distributed generation with energy storage added to handle solar radiation from the sun and high grid power operating costs in the suggested scenario, wind turbines and solar Photovoltaic (PV) are classified as non-dispatchable distributed generators. The resulting linear math issues are assessed and displayed in MATLAB optimization software using a mixed-integer linear programming (MILP) strategy. According to the simulation results, the suggested energy management strategy reduced the university microgrid’s grid power costs by 38.8%, making it an affordable solution which is somehow greater than the prior case scenario’s 23% savings. The installed solar system capacity’s effects on the economy, society, and finances were also assessed, and it became clear that the best option for the smart microgrid was determined that would be 325 kW of solar PV, 25 kW of wind turbine, and 600 kW of diesel generators, respectively. Given the current situation, university administrators are urged to participate in distributed generators and adopt cutting-edge designs for energy storage technologies due to the significant environmental and financial benefits.  相似文献   
16.
We provide evidence of nanopatterning-induced bending of an ultrathin tensile strained silicon layer directly on oxide. This strained layer is achieved through the epitaxial growth of silicon on a Si(0.84)Ge(0.16) virtual substrate and subsequent transfer onto a SiO(2)-capped silicon substrate by combining hydrophilic wafer bonding and the ion-cut process. Using high resolution transmission electron microscopy, we found that the upper face of the strained silicon nanostructures fabricated from the obtained heterostructure using electron beam lithography and dry reactive ion etching displays a concave shape. This bending results from the free-surface-induced strain relaxation, which implies lattice out-of-plane expansion near the edges and concomitant contraction at the center. For a ~ 110 nm × 400 nm × 20 nm nanostructure, the bending is associated with an angle of 1.5° between the [Formula: see text] vertical atomic planes at the edges of the ~ 110 nm side. No bending is, however, observed at the strained Si/SiO(2) interface. This phenomenon cannot be explained by the classical Stoney's formula or related formulations developed for nanoscale thin films. Here we employed a continuum mechanical approach to describe these observations using three-dimensional numerical calculations of relaxation-induced lattice displacements.  相似文献   
17.
In this paper a constrained nonlinear predictive control algorithm, that uses the artificial bee colony (ABC) algorithm to solve the optimization problem, is proposed. The main objective is to derive a simple and efficient control algorithm that can solve the nonlinear constrained optimization problem with minimal computational time. Indeed, a modified version, enhancing the exploring and the exploitation capabilities, of the ABC algorithm is proposed and used to design a nonlinear constrained predictive controller. This version allows addressing the premature and the slow convergence drawbacks of the standard ABC algorithm, using a modified search equation, a well-known organized distribution mechanism for the initial population and a new equation for the limit parameter. A convergence statistical analysis of the proposed algorithm, using some well-known benchmark functions is presented and compared with several other variants of the ABC algorithm. To demonstrate the efficiency of the proposed algorithm in solving engineering problems, the constrained nonlinear predictive control of the model of a Multi-Input Multi-Output industrial boiler is considered. The control performances of the proposed ABC algorithm-based controller are also compared to those obtained using some variants of the ABC algorithms.  相似文献   
18.
19.
The interactions of methyl esters, methyl ketones and aldehyde compounds with polypropylene (PP) film were investigated. PP film, placed on a glass vial, was immersed in aqueous solution containing a model flavour compound. After a determined time at 45°C, the PP film was analysed by Fourier transform infrared spectroscopy (FTIR), allowing us to follow the speed of sorption and to quantify its relative rate. For PP films, we observed that the sorption strongly depended on the structure of sorbed molecules. For each functional group of flavour compounds, the sorption increased as the carbon chain number increased. A linear chain of 12–14 carbons favours the sorption more than a linear chain of eight carbons. Concerning functions, the rate of sorption usually decreases from esters to ketones and to aldehydes. High sorption was observed for flavour compounds with a low difference of solubility parameter (SP) value between the film and flavour [(δpolymer ? δflavour)2 value]. Furthermore, by using the proposed thermodynamic affinity concept, represented as the contribution of three interactive molecular forces [dispersion (dd), polar (dp) and hydrogen bonding (dh)] between two SP values of film and flavour, packaging materials with high flavour preservation against sorption can be designed. We have a good correlation between the kinetic sorption by FTIR and the SP concept. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
20.
Applied Intelligence - Air toxicity and pollution phenomena are on the rise across the planet. Thus, the detection and control of gas pollution are nowadays major economic and environmental...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号