This paper deals with unsupervised Bayesian classification of multidimensional data. We propose an extension of a previous method of generalized mixture estimation to the correlated sensors case. The method proposed is valid in the independent data case, as well as in the hidden Markov chain or field model case, with known applications in signal processing, particularly speech or image processing. The efficiency of the method proposed is shown via some simulations concerning hidden Markov fields, with application to unsupervised image segmentation 相似文献
Heat transport across vertical interfaces of heterogeneous 2D materials is usually governed by the weak Van der Waals interactions of the surface‐terminating atoms. Such interactions play a significant role in thermal transport across transition metal carbide and nitride (MXene) atomic layers due to their hydrophilic nature and variations in surface terminations. Here, the metallicity of atomically thin Ti3C2Tz MXene, which is also verified by scanning tunneling spectroscopy for the first time, is exploited to develop a self‐heating/self‐sensing platform to carry out direct‐current annealing experiments in high (<10?8 bar) vacuum, while simultaneously evaluating the interfacial heat transport across a Ti3C2Tz/SiO2 interface. At room temperature, the thermal boundary conductance (TBC) of this interface is found, on average, to increase from 10 to 27 MW m?2 K?1 upon current annealing up to the breakdown limit. In situ heating X‐ray diffraction and X‐ray photo‐electron spectroscopy reveal that the TBC values are mainly affected by interlayer and interface spacing due to the removal of absorbents, while the effect of surface termination is negligible. This study provides key insights into understanding energy transport in MXene nanostructures and other 2D material systems. 相似文献
In bilateral telemanipulation algorithms based on enforcing time-domain passivity, internal friction in the devices poses an additional energy drain. This can severely decrease the obtainable transparency of these algorithms when high amounts of friction are present in the slave device. Based on a model of the friction, the dissipated energy can be estimated and reclaimed inside the energy balance of the control algorithm. Extending the energy balance which is monitored, decreases the net passivity of the telemanipulation system enforced by the control algorithm, which usually enforces passivity of just the bilateral controller. Experimental results are provided that demonstrate the effectiveness of the proposed approach in increasing the obtainable transparency. As long as the physically dissipated energy is underestimated, the telemanipulation system as a whole will remain passive. Thus the guaranteed stability property of the time-domain passivity algorithm is maintained. 相似文献
We have grown GexSi1-x (0 <x < 0.20,1000–3000Å thick) on small growth areas etched in the Si substrate. Layers were grown using both molecular beam epitaxy (MBE) at 550° C and rapid thermal chemical vapor deposition (RTCVD) at 900° C. Electron beam induced current images (EBIC) (as well as defect etches and transmission electron microscopy) show that 2800Å-thick, MBE Ge0.19Si0.81 on 70-μm-wide mesas have zerothreading and nearly zero misfit dislocations. The Ge0.19Si{0.81} grown on unpatterned, large areas is heavily dislocated. It is also evident from the images that heterogeneous nucleation of misfit dislocations is dominant in this composition range. 1000Å-thick, RTCVD Ge0.14Si0.86 films deposited on 70 μm-wide mesas are also nearly dislocation-free as shown by EBIC, whereas unpatterned areas are more heavily dislocated. Thus, despite the high growth temperatures, only heterogeneous nucleation of misfit dislocations occurs and patterning is still effective. Photoluminescence spectra from arrays of GeSi on Si mesas show that even when the interface dislocation density on the mesas is high, growth on small areas results in a lower dislocation density than growth on large areas. 相似文献
In the framework of context awareness within the home, our team is currently assessing the unobtrusive detection of inhabitants' activity through the monitoring of their use and consumption of electricity. The objective is to develop a system for the remote monitoring of large populations of elderly people living independently at home. To be readily deployable on the field, such a system must be minimally intrusive both for the home environment and for the field professionals (paramedics and social workers) visiting the patients at home. We carried out two successive field experiments to evaluate and to improve our system designed to deliver a single index of daily activity. The first experiment involved 13 elderly persons over a nine-month period (84,240 h data recorded) and the second one 12 elderly over six months (51,840 h). We evaluated both the relevance of the index and the acceptability of the system as a whole. We discovered that electrical activity is a kind of unique "signature" of each person's activity. Moreover, this profile provides unexpected information on the health status of the subject. We confirmed that the system was unobtrusive and well accepted both by the subjects and by the professionals involved. Our unique index of activity, and its trend over time, can provide timely information to the professionals on the patient. 相似文献
We provide a provable-security treatment of “robust” encryption. Robustness means it is hard to produce a ciphertext that is valid for two different users. Robustness makes explicit a property that has been implicitly assumed in the past. We argue that it is an essential conjunct of anonymous encryption. We show that natural anonymity-preserving ways to achieve it, such as adding recipient identification information before encrypting, fail. We provide transforms that do achieve it, efficiently and provably. We assess the robustness of specific encryption schemes in the literature, providing simple patches for some that lack the property. We explain that robustness of the underlying anonymous IBE scheme is essential for public-key encryption with keyword search (PEKS) to be consistent (meaning, not have false positives), and our work provides the first generic conversions of anonymous IBE schemes to consistent (and secure) PEKS schemes. Overall, our work enables safer and simpler use of encryption. 相似文献
The ease of deployment of Wireless Sensor Networks (WSNs) makes them very popular and useful for data collection applications. Nodes often use multihop communication to transmit data to a collector node. The next hop selection in order to reach the final destination is done following a routing policy based on a routing metric. The routing metric value is exchanged via control messages. Control messages transmission frequency can reduce the network bandwidth and affect data transmission. Some approaches like trickle algorithm have been proposed to optimize the network control messages transmission. In this paper, we propose a collaborative load balancing algorithm (CoLBA) with a prediction approach to reduce network overhead. CoLBA is a queuing delay based routing protocol that avoids packet queue overflow and uses a prediction approach to optimize control messages transmission. Simulation results on Cooja simulator show that CoLBA outperforms other existing protocols in terms of delivery ratio and queue overflow while maintaining a similar end-to-end delay.