首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   19篇
电工技术   2篇
化学工业   76篇
金属工艺   7篇
机械仪表   12篇
矿业工程   1篇
能源动力   5篇
轻工业   8篇
水利工程   1篇
无线电   17篇
一般工业技术   116篇
冶金工业   18篇
自动化技术   24篇
  2024年   1篇
  2023年   9篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   11篇
  2018年   13篇
  2017年   11篇
  2016年   12篇
  2015年   11篇
  2014年   14篇
  2013年   9篇
  2012年   15篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   13篇
  2007年   13篇
  2006年   15篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
排序方式: 共有287条查询结果,搜索用时 203 毫秒
11.
We evaluated impacts of conservation agriculture (zero tillage, bed planting and residue retention) on changes in total soil N (TSN) and aggregate-associated N storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum) and wheat (Triticum aestivum) crops were grown during the first 3 years (2008–2011) and in the last year, maize (Zea mays) and wheat were cultivated. Results indicate that after 4 years the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had 15 % higher TSN concentrations than conventional tillage and bed planting plots (CT-B) (0.63 g kg?1 soil) in the 0–5 cm soil layer. CT-B plots had lower soil bulk density that ZT plots in that layer. Plots under ZT-B (0.57 Mg ha?1) contained 20 % higher TSN stock in the 0–5 cm soil layer than CT-B plots (0.48 Mg ha?1). However, tillage had no impact on TSN concentration or stock in the sub-surface (5–15 and 15–30 cm) soil layers. Thus, in the 0–30 cm soil layer, ZT-B plots contained 6 and 5 % higher (P > 0.05) TSN stock compared with CT-B (2.15 Mg N ha?1) and CT-F (2.19 Mg N ha?1) plots respectively after 4 years. Plots that received cotton/maize + wheat residue (C/M + W RES) contained 16 % higher TSN concentration than plots with residues removed (N RES; 0.62 g kg?1 soil) in the surface (0–5 cm) layer. Plots with only cotton/maize residue (C/M RES) or only wheat residue (W RES) retention/incorporation had similar TSN concentrations and stocks in the subsurface layer. Plots under ZT-B also had more macroaggregates (0.25–8 mm) and greater mean weight diameter with lower silt + clay sized particles than CT-B plots in that layer. A greater proportion of large macroaggregates (2–8 mm) in the plots under C/M + W RES compared with N RES were observed. In the 5–15 cm soil layer ZT-B and C/M + W RES treated plots had more macroaggregates and greater mean weight diameter than CT-B and N RES treated plots, respectively. Because of the greater amount of large aggregates, plots under ZT-B and C/M + W RES had 49 and 35 % higher large macroaggregate-associated N stocks than CT-B (38 kg TSN ha?1) and N RES (40 kg TSN ha?1) plots, respectively, in the 0–5 cm soil layer, although aggregates had similar TSN concentrations in all plots. Both tillage and residue retention had greater effects on aggregate-associated N stocks in the 5–15 cm layers. In addition to N content within large macroaggregates, small macroaggregate-associated N contents were also positively affected by ZT-B and C/M + W RES. Tillage and residue retention interaction effects were not significant for all parameters. Thus, the adoption of ZT in permanent beds with crop residue addition is a better management option for improvement of soil N (and thus possibly a reduced dose of fertilizer N can be adopted in the long run), as the management practice has the potential to improve soil aggregation with greater accumulation of TSN within macroaggregates, and this trend would likely have additive effects with advancing years of the same management practices in this region.  相似文献   
12.
Nylon 66 has been transformed into a material with significantly improved properties like hardness, tensile strength, and flexural modulus by processing it under the optimized dose rate of electron beam in the presence of suitable crosslinkers. Furthermore, percent water absorption of nylon 66 was reduced substantially on irradiation. Thermogravimetric analysis revealed that thermal stability of nylon 66 improved with increasing dose of radiation. Improvement of mechanical and thermal properties and reduction of water absorption of nylon 66 were due to the crosslinking of polyamide molecules made possible by the high energy radiation. Increase of crosslinking with increasing radiation dose was verified by the increase of gel content at higher doses. Differential scanning calorimetry showed that both melting and crystallization temperatures along with percent crystallinity of nylon 66 were decreased with the increasing dose of radiation leading to the development of more amorphous character in this semicrystalline polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   
13.
14.
Nanocrystalline (30 nm) lead zirconate-titanate (PZT) ceramics, with Zr/Ti ratio 60:40, was prepared by a chemical method starting from a mixed metal ion–tartarate (Zr4+, Ti4+)–EDTA (Pb2+) complex solution. After complete evaporation of the mixed complex solution, a fluffy dried mass, known as precursor material was obtained. Heat-treatments of the precursor material at 400°C/2 h resulting single phase PZT. The precursor and heat-treated powders were characterized by TG/DTA, XRD and TEM analysis. The result shows that the process provides a technically simple route for the preparation of nanocrystalline PZT powders at low preparation temperatures.  相似文献   
15.
16.
Pure spodumene and spodumene-zirconia (5, 10, 15 mol%) composite powders were prepared using aqueous sol-gel method employing lithium formate, aluminium formate, zirconium formate and tetraethoxy silane (TEOS) as starting materials in aqueous medium. The gels prepared by this method were dried at 100°C for 24h and then calcined for 2h at different temperatures ranging from 500°C to 800°C. X-ray powder diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TGA) and infra-red spectroscopy analysis (IR) were utilized to characterize the gel powders and calcined powders. Transmission electron microscope (TEM) was used to measure the average particle size of the calcined powders.  相似文献   
17.
Nanocrystalline metal molybdate [i.e., AMoO4 where A=Ca(II), Co(II),Cu(II), Ni(II), and Zn(II)] powders have been prepared from the complete evaporation of a polymer-based metal-complex precursor solution. The precursor solution was constituted of the metal ions that were in aqueous solution through complexation with ethylene diamine tetraacetic acid (EDTA) in the presence of diethanolamine (DEA), and a polymeric reagent, which was an aqueous solution mixture of sucrose and polyvinyl alcohol (PVA). Complete dehydration of the precursor solution generated a voluminous mesoporous carbon-rich precursor mass, heat treatment (at temperatures ≤500°C) of which resulted in the respective metal molybdate phase. The average diameter of the particles from transmission electron microscopy and X-ray diffraction studies ranged between 15 and 40 nm.  相似文献   
18.
Direct ethanol fuel cell (DEFC) is a promising power source for future use in portable electronic equipments. In general, the power density obtained in DEFC is lower than that of direct methanol fuel cell. In the present study, various losses in DEFC are estimated by performing experiments with the prepared membrane electrode (MEA) to obtain current–voltage characteristics and comparing it with the prediction of mathematical model. MEA for the DEFC is prepared using Pt–Ru (40:20 by wt.%)/C as anode catalyst, Pt–black as cathode catalyst with 1 mg/cm2 of loadings and cast Nafion® (SE5112, DuPont) ionomer as proton exchange membrane. The mathematical model for DEFC is developed considering different overpotentials. The activation overpotential term is formulated considering ethanol electrooxidation mechanism proposed in literature and Butler–Volmer equation. The ohmic overpotential is modeled based on proton conductivity of Nafion® membrane and ohmic losses at the electrodes, current collectors and electrode–current collector interfaces. The concentration overpotential is formulated using Fick's law, modified Butler–Volmer equation and transport process through electrodes and electrocatalyst layers. The experiment data on current–voltage characteristics is predicted by the model with reasonable agreement and the influence of ethanol concentration and temperature on the performance of DEFC is captured by the model.  相似文献   
19.
Titanium alloys are known as difficult-to-machine materials. The problems of machining titanium are many folds which depend on types of titanium alloys. This paper investigates the underlying mechanisms of basic challenges, such as variation of chip thickness, high heat stress, high pressure loads, springback, and residual stress based on the available literature. These are responsible for higher tool wear and worse machined surface integrity. In addition, many cutting tool materials are inapt for machining titanium alloys as those materials are chemically reactive to titanium alloys under machining conditions. To address these problems, latest techniques such as application of high pressure coolant, cryogenic cooling, tap testing, thermally enhanced machining, hybrid machining, and use of high conductive cutting tool and tool holder have also been discussed and correlated. It seems that all the solutions are not yet well accepted in the industrial domain; further advancement in those fields are required to reduce the machining cost of titanium alloys.  相似文献   
20.
The small‐sized molecules that have been developed from single hydrophobic amino acids (Phe, Trp, Tyr and Leu) by suitably protecting the –NH2 and –CO2H groups generate diverse nanoscopic structures – such as nanorods, nanofibrils, nanotubes, and nanovesicles – depending upon the protection parameters and solvent polarity. The vesicular structures get disrupted in the presence of various salts, such as KCl, CaCl2, (NH4)2SO4 and N(n‐Bu)4Br. Insertion of unnatural (o/m/p)‐aminobenzoic acids as a protecting group and the lack of conventional peptide bonds in the molecules give the nanostructures proteolytic stability. The nanostructures also show significant thermal stability along with a morphological transformation upon heat treatment. Our in vitro studies reveal that the addition of micromolar concentration “curcumin” significantly reduces the formation of amyloid‐like fibrils. These diverse nanostructures are used as a template for fabricating silver nanoparticles on their outer surfaces as well as in the inner part, followed by calcination in air which helps to obtain a 1D silver nanostructure. Furthermore, the nanovesicles are observed to encapsulate a potent drug (curcumin) and other biologically important molecules, which could be released through salt‐triggered disruption of vesicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号